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I. MOTIVATION AND BACKGROUND

Data stream processing is an increasingly important topic
due to the prevalence of smart devices and the demand for real-
time analytics. One estimate suggests that we should expect
nine smart-devices per person by the year 2025 [1]. These
devices generate data which might include sensor readings
from a smart home, event or system logs on a device, or
video feeds from surveillance cameras. As the number of
devices increases, the cost of streaming the device data to the
cloud over the wide-area network (WAN) will also increase
substantially. Transferring and querying this data efficiently
has become the focus of much academic research [2]–[5].
Edge computation affords us the opportunity to address this
problem by utilizing resources close to the devices. Edge
resources have many different use cases, including minimizing
end-to-end latency or maximizing throughput [6], [7]. We
restrict our focus to minimizing the required WAN bandwidth,
which is an effort to address the increase in data volume.

One strategy for reducing bandwidth consumption involves
performing sampling at the edge [8]. This technique seeks
to transfer a subset of the incoming streaming data without
substantially impacting the results of user queries. Figure 1
shows an example of a system which performs sampling at the
edge prior to forwarding data to the cloud. If these samples
are an accurate representation of the original streams, then
simply transferring the sample rather than the original data
can save on the transfer cost. More sophisticated sampling
techniques consider data-aware approaches to sampling. For
example, Trihinas, Pallis, and Dikaiakos [9] propose a method
for sampling a stream that considers the evolution of the stream
over time. This involves continually estimating the variability
in the stream and increasing the sampling rate if the stream
becomes more variable. However, this approach assumes the
user can exercise control over the sampling rate and does
not consider dependencies that may exist between the devices
themselves.

Another strategy for handling bandwidth constraints uses
the cloud to simulate values from a stream. In this case, the
user builds a machine learning model to simulate values from
a stream when directly sampling the device is too expensive.
Memon and Maheswaran [10] built a recurrent neural network
model in the cloud which simulates values from a data stream
based on historical data. Their approach is able to produce

Fig. 1. System Topology. This example has 3 devices generating data with
one edge node performing sampling prior to forwarding data to the cloud.

simulated data under a variety of conditions, but it does not
attempt to detect and exploit dependencies between streams.

Both the data-aware sampling approach and the cloud
simulation approach address WAN bandwidth constraints in
different ways. This line of research considers a hybrid
approach which seeks to systematically trade-off between
edge sampling and simulation in the cloud. We restrict our
focus to aggregate queries, which estimate quantities like
counts, averages, standard deviations, and order statistics (e.g.
minimum, maximum, or median).

II. PROBLEM STATEMENT AND PROPOSED SOLUTION

We assume there exists a set of k data-generating devices
which produce key-value pairs over time. We also assume
there exists an edge node which receives data from these
devices or has the ability to query the devices directly. The
edge node aggregates this data and is tasked with selecting
a subset of the data to forward to the next node in the
system, subject to some constraints. There are two main goals
associated with this task:

1) Selecting a subset of data points that maximizes the
amount of information gained about quantities of interest
to the user.

2) Minimizing the amount of bandwidth (cost) required to
convey this information to the next node in the system.

We formulate a more complex data-aware approach for
sampling which attempts to exploit dependencies in the data.
Recent research suggests that devices that are located in
the same geographical regions may exhibit some kind of
dependency [11], [12]. We seek to leverage these dependencies



to produce more accurate simulations from a stream when
required. We examine two main sources of dependency:

1) Auto-correlation: Indicates the present values of a
stream are dependent on its own past values.

2) Cross-correlation: Indicates the present values of a
stream, Y are dependent on the current or past values
of another stream X .

If we can accurately estimate the dependence in the data, we
can allocate our samples more efficiently and simulate values
from a stream more accurately. For example, if we know that
two streams X and Y are sufficiently dependent, it may be
optimal to only forward samples from stream X and let a
model in the cloud simulate values from Y based on the
observed values of X .

To that end, we formulate an information-theoretic opti-
mization framework that runs at the edge and allocates samples
given the dependence structure. In this case, we assume each
stream follows a certain probability distribution, parameterized
by a vector of parameters, θi. Our objective is to maximize
the Fisher Information, which quantifies the amount of infor-
mation about the distribution parameters present in the data
[13]. Note that this information measure assumes a probability
model for the stream; however, this assumption can be relaxed
in practice. Let the number of real and simulated samples from
a stream i be represented by ni,r and ni,s respectively. Then
we denote the Fisher Information gained about the stream
parameters by I(θi, ni,r, ni,s). At a high level, this results
in the following, simplified optimization problem:

max
n

k∑
i=1

I(θi, ni,r, ni,s)

s.t.
k∑

i=1

ci(ni,r, ni,s) ≤ C

(1)

where C is a bound on the overall cost and ci(ni,r, ni,s)
is a measure of the cost for transferring ni,r samples and
simulating ni,s from stream i. This basic formulation is a
convex optimization problem; however, the problem becomes
non-convex if other constraints are enforced (depending on
the application). In order to quantify the value of a simulated
sample, we use the information theoretic concept of mutual
information, which is able to capture arbitrary dependencies
between two random variables. One drawback of this measure
is that it requires knowledge of the pairwise joint distributions,
which are not often realized in practice.

III. EMPIRICAL RESULTS AND FUTURE WORK

In order to evaluate the efficacy of our approach, we tested
our framework against a real-world dataset with dependent
streams. We used a UMASS trace containing temperature mea-
surements from three homes located in western Massachusetts
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Fig. 2. Bandwidth vs. Error Rate for the UMASS Temperature Trace
captured at house A.

[14] and performed our optimization to determine which
samples should be sent and which should be simulated. We
compared this approach against the Neyman Allocation, which
simply allocates samples based on the estimated variability
in each stream [15]. For each house, we measured the error
associated with a query for the average temperature. Figure 2
compares the performance of the sampling methods across a
variety of sample sizes. We used sample size as a proxy for
bandwidth cost, since the increase in samples is proportional to
the increase in WAN bandwidth required for the data transfer.
Our hybrid method obtains a 1% error rate by sampling
30% percent of the observed values. The standard sampling
approach required a sampling rate just over 50% to obtain the
same average error. This suggests our combination of sampling
and simulation has the potential to obtain comparable query
accuracy with a 40% reduction in bandwidth requirements.

There are a few major challenges we are looking to ad-
dress in our future work. First, our theoretical framework
makes some strong assumptions, including a parametric model
and knowledge of the pairwise joint distributions across the
streams, which are difficult to estimate in practice. Another
challenge is tolerating applications which perform outlier
detection. If we simulate enough values with a model based on
the expected value, we will be masking the variation present
in the data. So we seek to establish criteria for bounding the
number of simulated samples to prevent biasing these queries.
Finally, we want to better understand the computational trade-
off when performing sampling and optimization at the edge.
Addressing these challenges will allow us to apply our frame-
work to a wider range of applications.
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