
Accelerated Training via Device Similarity in Federated
Learning

Yuanli Wang, Joel Wolfrath, Nikhil Sreekumar, Dhruv Kumar, Abhishek Chandra
University of Minnesota

Minneapolis, Minnnesota, USA
{wang8662,wolfr046,sreek012,dhruv,chandra}@umn.edu

ABSTRACT
Federated Learning is a privacy-preserving, machine learning tech-
nique that generates a globally shared model with in-situ model
training on distributed devices. These systems are often comprised
of millions of user devices and only a subset of available devices
can be used for training in each epoch. Designing a device selection
strategy is challenging, given that devices are highly heterogeneous
in both their system resources and training data. This heterogeneity
makes device selection very crucial for timely model convergence
and sufficient model accuracy. Existing approaches have addressed
system heterogeneity for device selection but have largely ignored
the data heterogeneity. In this work, we analyze the impact of data
heterogeneity on device selection, model convergence, model ac-
curacy, and fault tolerance in a federated learning setting. Based
on our analysis, we propose that clustering devices with similar
data distributions followed by selecting the devices with the best
processing capacity from each cluster can significantly improve the
model convergence without compromising model accuracy. This
clustering also guides us in designing policies for fault tolerance
in the system. We propose three methods for identifying groups
of devices with similar data distributions. We also identify and
discuss rich trade-offs between privacy, bandwidth consumption,
and computation overhead for each of these proposed methods.
Our preliminary experiments show that the proposed methods can
provide a 46% - 58% reduction in training time compared to existing
approaches in reaching the same accuracy.

ACM Reference Format:
Yuanli Wang, Joel Wolfrath, Nikhil Sreekumar, Dhruv Kumar, Abhishek
Chandra. 2021. Accelerated Training via Device Similarity in Federated
Learning. In 4th International Workshop on Edge Systems, Analytics and
Networking (EdgeSys ’21), April 26, 2021, Online, United Kingdom. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3434770.3459734

1 INTRODUCTION
The increasing number of IoT and edge devices has led to expo-
nential growth in data at the network edge. It is infeasible to send
this data to remote clouds due to privacy concerns and bandwidth
constraints. These concerns have led to data processing locally at

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EdgeSys ’21, April 26, 2021, Online, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8291-5/21/04. . . $15.00
https://doi.org/10.1145/3434770.3459734

the edge nodes or user devices and then sharing any features or
parameters of low payload with the cloud for further processing.
Distributed machine learning algorithms are a primary example
of this processing strategy, which requires large amounts of data
to provide accurate predictions. Federated learning (FL) [2] is the
branch of distributed machine learning that depends on a federa-
tion of edge nodes for in-situ training and testing of models while
preserving privacy. It has received significant attention recently
and has been used in mobile applications such as search sugges-
tion [23] and object detection [12]. Two main features differentiate
federated learning from a standard distributed machine learning
problem: system heterogeneity and data heterogeneity.
System Heterogeneity: Federated learning is performed on de-
vices having heterogeneous processing capacity, network band-
width, power, and other system resources. Many prior works have
evaluated the impact of system heterogeneity on performance
[5, 7, 14, 15, 20, 22]. In addition to resource differences, devices
can join or leave the network during training. For example, users
may switch off their mobile phones or disconnect them from the
network, making them unavailable for training.
Data heterogeneity: Also known as statistical heterogeneity, data
heterogeneity implies the data residing on user devices may have
different probability distributions. Many factors may contribute to
this variation, such as the geo-distributed nature of devices (differ-
ing time zones, events) or user behaviors. These differences violate
the well-known i.i.d. assumptions in machine learning, which as-
sume that all training samples are independent and come from the
same joint probability distribution (identically distributed).

The total number of devices participating in federated learning
can be in the millions [3]. Since it is not possible for all devices to
be available for training simultaneously, federated learning selects
a small subset of these devices in each training epoch. System het-
erogeneity and data heterogeneity make device selection crucial for
timely model convergence and sufficient model accuracy. Therefore,
methods like TiFL [5] select the set of devices participating in each
training epoch based on their processing capacity, thereby accel-
erating training and mitigating the straggler effect. Prior works
have mainly considered system heterogeneity to achieve acceptable
system metrics (e.g., training speed, energy consumption) without
fully considering the data heterogeneity and fault tolerance per-
spective. In this work, we focus on the impact of data heterogeneity
on federated learning systems and explore methods for increasing
performance and reliability in this setting. We conduct detailed
experiments to simulate a variety scenarios for selecting devices
using MNIST and MNIST-Variations datasets. Our experimental

31

https://doi.org/10.1145/3434770.3459734
https://doi.org/10.1145/3434770.3459734

EdgeSys ’21, April 26, 2021, Online, United Kingdom Wang and Wolfrath , et al.

analysis demonstrates that data heterogeneity can have a signif-
icant impact on overall system performance. These results raise
several research questions, including:

(1) How can we measure and quantify data heterogeneity or
data similarity across multiple devices?

(2) How do we develop methods for device selection based on
the quantified data heterogeneity, and how does system het-
erogeneity fit into the picture?

(3) How can we leverage data similarity/heterogeneity to im-
prove the fault tolerance of the system?

(4) What are the various trade-offs for privacy, bandwidth con-
sumption, computation overhead, training accuracy, and
training speed associated with the device selection meth-
ods?

To address these questions, we propose methods for device se-
lection that leverage the local data distributions. Our preliminary
experiments show that the proposed methods can provide a 46% -
58% reduction in training time compared to existing approaches in
reaching the same accuracy.

2 BACKGROUND AND RELATEDWORK
Federated Learning (FL) [2] allows collaborative learning of a pre-
diction model at user devices while preserving privacy, ownership,
and locality of data. The concept enforces "bring code to data"
by training models with local data on devices. During training,
each participating device generates a locally optimal model update,
which is propagated to the central server and systematically com-
bined with updates from other devices to get the global update.
This global update is then shared with the participating devices to
further improve their local models. This sharing of model updates
between central server and user devices happens over multiple
iterations until model convergence is achieved. Since each device
utilizes its local data for model training, FL is able to provide a
personalized experience to each user. This experience, along with
low latency, less power consumption, and privacy preservation
has made FL very attractive in recent years. At the same time, the
volatility of user devices and heterogeneity in their processing ca-
pacity, storage, network and data are some of the challenges which
should be addressed in order to to build a robust FL system.

Model training in FL involves selecting a subset of devices out
of the complete population of user devices. The presence of system
and data heterogeneity makes device selection an important task
in FL. The existing approaches for FL select devices based on ran-
dom sampling [3, 6] or system heterogeneity [5]. Google recently
released the design of their large scale federated learning system
employed in production environment [3]. Their system first iden-
tifies the eligible devices which are idle, connected to a charging
source and unmetered network (such as Wifi). Then, it randomly
selects a target number of devices out of the complete set of eligible
devices. TiFL [5] selects the set of devices participating in training
in each iteration based on their computational speed to accelerate
training and mitigate straggler effect.

Data heterogeneity across devices/locations is a significant chal-
lenge for decentralized learning systems [13, 17]. Many of the ex-
isting decentralized algorithms see a loss in accuracy when trained
using heterogeneous or skewed data [6, 11, 16]. In FL, selection of

devices based on random sampling or system heterogeneity can
lead to high skewness as each user can potentially have a distinct
data generation pattern. Hence, it is important to consider data
heterogeneity while designing device selection policy.

Federated multi-task learning [9] utilizes multi-task learning
[8] to model the relationships between different device data dis-
tributions so as to handle data heterogeneity. But this approach is
not applicable to general non-convex deep learning models. Oort
[21] selects devices based on processing power and highest utility.
The cherry-picking of clients based on utility (highest loss during
training) improves the convergence rate of FL models. We build
upon this utility based selection method in one of the proposed
methods in this work.

3 IMPACT OF DATA HETEROGENEITY
We first examine the impact of data heterogeneity on selecting
devices during training in federated learning, especially at the edge.
More specifically, we try to understand which subset of devices
should be selected for training to ensure high accuracy while ac-
celerating training speed and achieving fault tolerance. To that
end, we conduct detailed experiments to simulate various scenarios
using two datasets, and the LEAF framework [4]. Each dataset has
a different type of data heterogeneity:

• Data heterogeneity on class labels. Here, different de-
vices have a different distribution of class labels. For this,
we use MNIST dataset [10]. All the images are 28x28 pixels
hand-writing numbers labeled from [0-9].
• Data heterogeneity within the same class. Here, differ-
ent devices have different data distributions for the same
class. For example, users may write the same digit with differ-
ent styles. For this, we use the MNIST Variations dataset[1],
which has five different styles for each number.

For each of the two types of heterogeneity, we divide the dataset
into 100 partitions and each partition is assigned to one client. We
randomly select 20 clients from these 100 clients for each training
epoch. We extend the distributed federated learning framework
LEAF to simulate different drop patterns.
Model. We use the same Convolutional Neural Network model
that is presented in LEAF. The overall accuracy is the average of the
test accuracy on all devices across 1000 epochs. Wherever required,
we also measure the accuracy on each device separately. Given
this framework, we now turn our attention to various scenarios for
device selection.

3.1 Intermittent availability of devices
In a real environment, edge devices, like mobile phones, may ini-
tially participate in training but leave after some epochs due to lack
of power supply, network disconnection, or other disruption. We
simulate this by dropping some devices from some training epochs
while ensuring that every device has participated in at least one
epoch. We use the MNIST dataset for evaluation. We adopt the
setting from Zhao et al. [24] to ensure that each device contains
data from at most two classes. We drop 0, 5, or 15 clients out of 20
clients in each epoch and plot the global model’s overall accuracy
on 100 clients after each training epoch in Fig. 1.

32

Accelerated Training via Device Similarity in Federated Learning EdgeSys ’21, April 26, 2021, Online, United Kingdom

 0

 0.5

 1

 0 100 200 300 400 500 600 700 800 900 1000

Ac
cu

ra
cy

Epoch

Drop 0 devices
Drop 5 devices

Drop 15 devices

Figure 1: Accuracy of each epoch when devices drop inter-
mittently

Observation. In Fig. 1, we see that intermittently dropping devices
do not significantly impact the overall accuracy. During the ini-
tial phases of training, there is more variation in the accuracy for
scenarios where the devices are dropped. However, as the training
progresses, the variation continues to reduce, eventually becoming
insignificant.
Conclusion. This result shows that federated learning is robust
to the intermittent dropping of devices. Hence, we may not need a
specially designed fault tolerance policy for such cases.

3.2 Permanent dropping of devices
In real environments, due to system heterogeneity, some devices
might be significantly slower than others. Therefore, existing sys-
tems such as TiFL [5] partition and select devices based on system
metrics (e.g., training speed). There is a possibility that the slower
devices may never get an opportunity to participate in training. To
simulate this scenario, we pre-select the set of devices which can
participate in the training. Then, in each training epoch, we only
select the devices from this pre-selected set. Effectively, this leads
to some devices not participating in the full training.

3.2.1 Data heterogeneity on class labels. We adopt the setting from
Zhao et al. [24] to partition 100 clients into 10 groups. Each group
contains ten clients and will be assigned, two classes. We ensure
that a device in any group will have training data only from the two
classes assigned to that group, as shown in Table 1. We implement
two dropping policies: 1) randomly pre-select some clients to drop
2) pre-select an entire group of devices to drop. For each policy, we
drop 80 out of 100 devices and measure the trained global model’s
accuracy on the local test dataset of each device. The results are
shown in Fig. 2.

Table 1: Partition of training data on 100 devices

Device Group No. 0 1 2 3 4
Classes 6,7 1,4 5,9 2,3 0,4

Device Group No. 5 6 7 8 9
Classes 2,5 6,8 0,9 7,8 1,3

Observation. In Fig. 2 Top, there is no drop in accuracy for any
group. We conclude that if at least one client from each group
participates in training, the accuracy of all devices in this group can
be guaranteed. In Fig. 2 Bottom, we see that the groups which have
been dropped completely experience a significant drop in accuracy.
The accuracy drop for dropped groups that have some of their class
labels in participating groups is less than the groups whose class
labels are not present in any of the participating groups.

 0

 100

0 1 2 3 4 5 6 7 8 9

pe
rc

en
ta

ge

device group

Average accuracy of devices in this group
Percentage of devices participating in this group

96% 98% 97% 97% 98% 97% 95% 97% 95% 98%

0%

30% 30% 30% 20% 20% 10%
30% 30%

0%

 0

 100

0 1 2 3 4 5 6 7 8 9

pe
rc

en
ta

ge

device group

Average accuracy of devices in this group
Percentage of devices participating in this group

0% 0%

98%

49% 48%

99%

0%

99%

0% 0%0% 0% 0% 0% 0%

100%

0%

100%

0% 0%

Figure 2: Top: Devices are randomly dropped permanently
Bottom: Drop entire groups of devices permanently

3.2.2 Data heterogeneity within the class labels. We further con-
sider data heterogeneity within the same class. In this experiment,
we partition 100 clients into five groups. Each group contains 20
clients. All devices have all the class labels, but the devices are
grouped by different image styles from MNIST Variations Dataset
(See Table 2).

Table 2: Partition of training data on 100 devices

Device
Group
No.

0 1 2 3 4

Style basic
MNIST

Rotated
MNIST
+ back-
ground
images

MNIST
+ back-
ground
images

Rotated
MNIST

MNIST
+ ran-
dom
back-
ground

Observation. We dropped 90 clients and only left ten clients from
the basic MNIST group. The evaluation result is shown in Fig. 3.
The result shows that only the basic MNIST group achieved good
accuracy while other groups experience varying drops in accuracy.
We conclude that data heterogeneity within the same class label
has a similar impact as in previous experiments.

 0

 100

0 1 2 3 4

pe
rc

en
ta

ge

device group

Average accuracy of devices in this group
Percentage of devices participating in this group

98%

12% 13%
28%

11%

50%

0% 0% 0% 0%

Figure 3: Average accuracy and participation rate of each
group

Conclusion. Based on our analysis, we note the following:
• Federated learning is quite robust to the intermittent drop-
ping of devices.
• The accuracy for a permanently dropped device will not
drop as long as its data distribution is represented by some
other devices participating in the training process.

33

EdgeSys ’21, April 26, 2021, Online, United Kingdom Wang and Wolfrath , et al.

Figure 4: Data similarity across devices can be exploited for
accelerated learning

We conclude that utilizing statistical metrics (along with system
metrics) can significantly improve the performance and reliability
in federated learning without any loss in accuracy.

4 EXPLOITING DATA HETEROGENEITY
We have shown that data heterogeneity can have a substantial im-
pact on model accuracy. This impact is due to the violation of the
i.i.d. assumption, which requires that the data residing on all edge
devices is independently drawn from the same joint probability dis-
tribution. While this assumption offers nice theoretical guarantees,
it is scarcely realized in practice. In this work, we seek to exploit
this data heterogeneity in order to accelerate model training. To
achieve this, we propose that each device asynchronously send a
summary of its local data to the central node, where comparisons
will be performed between these summaries to identify devices
with similar data distributions. Note that the summary choice will
depend on each user’s performance and privacy preferences, as
typical federated learning systems assume no user data leaves the
edge devices.

Once the central node understands the data similarities between
devices, we can leverage that information to perform training on
a smaller, faster subset of the available devices. For example, if
two devices, 𝐷𝑖 , and 𝐷 𝑗 have very similar data distributions, the
central node can simply schedulemodel training on the faster device
each epoch. In this way, we can accelerate training by identifying
subsets of devices with "sufficiently similar" data distributions. In
the previous section, we showed that it might not be necessary
to include all devices in training if the data distribution is already
represented on another device. Accomplishing this objective boils
down to obtaining reasonable estimates of the data distributions
and computing similarity measures between them. We consider
several different data summaries which could be used to accelerate
training in this setting. We also discuss the bandwidth and privacy
implications associated with each data summary.
Objective: Our goal is to develop methods for identifying devices
with similar data distributions. Fig. 4 illustrates this process where
the central node identifies devices with similar local data distribu-
tions. We simultaneously consider the privacy implications associ-
ated with each method, which is of primary importance in federated
learning settings. We introduce a general model for leveraging user
data to compare devices and make optimizations. To motivate our
framework, consider the task of training a multiclass classifier in a

federated learning setting. Define:

Z𝑖 = {(𝑋𝑖,1, 𝑦𝑖,1), (𝑋𝑖,2, 𝑦𝑖,2), ... , (𝑋𝑖,𝑛𝑖 , 𝑦𝑖,𝑛𝑖)}
to represent the training data available at each device 𝑖 . Here, 𝑋𝑖 is
the matrix of input feature vectors and 𝑦𝑖 is the associated vector
of class labels. Then, each method must define and implement the
following components:

1. A function S(Z𝑖) which is run on each client device. This
function takes the local datasetZ𝑖 as input and produces a
summary or distribution over the dataset which will be sent
to the central node.

2. A distance function𝑑 (S(Z𝑎), S(Z𝑏)) which computes how
different the summaries ofZ𝑎 andZ𝑏 are.

The efficacy of each method depends on the selections of S and
𝑑 , while the privacy properties of the method depend solely on
the selection of S. Our framework proceeds by having each client
device compute S(Z𝑖) and send it to the central server, where
Algorithm 1 is executed. This algorithm groups devices by their
data distribution and performs training on the fastest device in each
grouping; however, this could easily be extended to selecting the
top 𝑘 devices from each group, or all devices that exceed a certain
performance threshold.

Algorithm 1: Server task for device selection
Input: Device summaries S(Z𝑖), distance function 𝑑
Result: Devices for Training this Epoch

𝑑𝑖𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥 ← Pairwise differences, 𝑑 (𝑆 (Z𝑖), 𝑆 (Z𝑗))
𝑔𝑟𝑜𝑢𝑝𝑠 ← Clustered devices based on 𝑑𝑖𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥

𝑑𝑒𝑣𝑖𝑐𝑒𝑠 ← empty list
for 𝑔𝑟𝑜𝑢𝑝 in 𝑔𝑟𝑜𝑢𝑝𝑠 do

insert(𝑑𝑒𝑣𝑖𝑐𝑒𝑠, < fastest device in 𝑔𝑟𝑜𝑢𝑝 >)
end
return 𝑑𝑒𝑣𝑖𝑐𝑒𝑠

In order to motivate our selections for S, we consider multiple
ways in which the data at each device may fail to meet the i.i.d.
assumptions. If the i.i.d. assumptions hold, then we can assume that
all of the data generated on each device comes from some shared,
joint probability distribution, 𝑝 (𝑋,𝑦). Taking this a step further, we
can factor the joint distribution as follows:

𝑝 (𝑋, 𝑦) = 𝑝 (𝑦) 𝑝 (𝑋 | 𝑦)
which implies that the i.i.d. assumption only holds if 𝑝 (𝑦𝑎) = 𝑝 (𝑦𝑏)
and 𝑝 (𝑋𝑎 | 𝑦𝑎) = 𝑝 (𝑋𝑏 | 𝑦𝑏) for all devices 𝑎, 𝑏 [19]. Our method
seeks to group devices by how similar their data is, i.e., which
devices are likely to share a joint distribution over 𝑋 and 𝑦. We
consider each part of the factored joint distribution in order to
estimate this. When violations of the i.i.d. assumption occur, we
should be able to detect and leverage them assuming some devices
have shared joint distributions, even if it is not shared across all
devices.
Method 1 - Distribution of Class Labels, 𝑝 (𝑦𝑖): As previously
stated, if devices have different marginal distributions of class labels,
they violate the i.i.d. assumptions. So we can attempt to use our

34

Accelerated Training via Device Similarity in Federated Learning EdgeSys ’21, April 26, 2021, Online, United Kingdom

framework to expedite the training process by letting S = 𝑝 (𝑦𝑖),
the probability mass function over the class labels. We define our
distance function 𝑑 to be the Hellinger distance [18], given by:

𝐻 (S(Z𝑎), S(Z𝑏)) =
1
√
2
∥
√
S(Z𝑎) −

√
S(Z𝑏)∥2

This distance function has a few desirable properties for our appli-
cation, including the tolerance for zero entries in the probability
mass function and a bounded output, i.e.,

0 ≤ 𝐻 (S(Z𝑎), S(Z𝑏)) ≤ 1

For this summary, we assume there are a finite number of class
labels𝑚 < ∞. Therefore, the data size required to send this probabil-
ity mass function over the network isΘ(𝑚). Once each device sends
its class label distribution to the central server, we can group de-
vices based on how similar their label distributions are and attempt
to optimize the training process based on that information.
Method 2 - Conditional Data Distribution, 𝑝 (𝑋𝑖 | 𝑦𝑖): This
strategy considers using the data distribution conditioned on the
class label as a summary of the local data, i.e.,S = 𝑝 (𝑋𝑖 |𝑦𝑖). Sending
this distribution exactly over the network presents problems in
practice, especially if we are dealing with a continuous feature
space. For example, if we have a 28x28 image, our conditional
distribution is over a 784-dimensional vector space. We propose a
couple of ways to handle the curse of dimensionality in this case:

• Instead of sending a huge distribution over the network, send
a point estimate for the mean vector instead. This would
simply be a single 784 dimensional vector for each class
label, which would provide slightly stronger privacy when
compared to a full distribution.

• Alternatively, we could reduce the dimension of the feature
space. In this case, we might consider generating a new fea-
ture space (e.g. by using the relative frequency of individual
pixel values as our features, we could reduce the dimension
down to 256).

In our implementation, we performed a simple transformation of
the pixel data. We reduce the dimension down to 256 by computing
the relative frequency of each pixel value and then send this 256-
dimensional vector across the network for each of the𝑚 labels. This
summary produces a frequency distribution over the pixel values,
which we then compare using the Hellinger Distance.
Method 3 - Loss based selection: This method was partially out-
lined in previous works [21]; here we show how it fits within our
larger framework. The loss-based approach hypothesizes that de-
vices that have similar empirical losses have similar underlying
data distributions. There are certainly some situations in which
this assumption does not hold, but it is a reasonable heuristic that
we use for comparison. Here, we define S to be the empirical loss
observed using the local device data on the global model. Then, the
central server can simply let 𝑑 be the absolute difference between
the losses observed at each device.

We aggregate a handful of implications for each of the methods
in Table 3. It shows the trade-offs we explored when estimating
data similarity across devices with each method. Here, we assume
there are 𝑛𝑖 records at each device, which are used to perform

classification across𝑚 possible labels. If dimensionality reduction
is used for 𝑝 (𝑋𝑖 |𝑦𝑖), we let 𝑠𝑖 denote the dimension of the summary.
The table highlights the fact that each of these methods comes with
implications for the data privacy and the amount of data we are
required to send.

Table 3: Trade-offs for various Dependence Estimates

Data Sent from each Device Data Size Privacy

Random None Complete
Privacy

𝑝 (𝑦𝑖) Θ(𝑚𝑖) Partial
𝑝 (𝑋𝑖 | 𝑦𝑖) Θ(𝑠𝑖𝑚𝑖) Partial
Empirical Loss on Global Model Θ(1) Stronger

Privacy

5 EVALUATION
In order to evaluate the efficacy of our approach, we performed
experimentswith each of our proposed policies alongwith a random
selection policy and a loss-based policy as previously discussed.
Dataset generation and device simulation: We used the MNIST
handwritten digits dataset [10] as the basis for generating local
training data for each device. There are𝑚 = 10 class labels in this
dataset, representing the numbers 0-9. In order to simulate devices
with similar data distributions, we allocate 𝑥% of data to a majority
label, while the remaining (100 − 𝑥)% data to three random labels,
per device. For our experiments, we choose 𝑥 = 91% while the
remaining three labels get 5%, 3% and 1% respectively.
We simulated 20 devices (2 for each class label with one being slow
and other fast) and then evaluated each of the proposed methods
against this partitioned dataset. The difference between fast and
slow devices was simulated using a sleep function, where slow
devices took 4x longer to finish each epoch.

Figure 5 shows the performance of each of the proposed meth-
ods along with a baseline strategy which randomly selects devices
for participation in each epoch. Table 4 shows the exact time to
convergence for each method along with the relative performance
compared to the random selection policy. All of the proposed meth-
ods readily outperform the random selection policy. The fastest
method uses the marginal distribution of class labels, 𝑝 (𝑦𝑖), as the
summary and reduced the training time by 58% relative to the ran-
dom strategy. The conditional data distribution summary, 𝑝 (𝑋𝑖 |𝑦𝑖),
obtains almost the same performance as 𝑝 (𝑦𝑖). We suspect the
difference is due to the slight increase in complexity required to
compute this summary. The strategy based on empirical loss was
also substantially better than the random strategy with a reduced
training time of 46%. While this did not perform quite as well as
the other summary methods, it does have better privacy properties.

6 DISCUSSION
In section 1, we posed multiple research questions regarding data
heterogeneity in federated learning. We show that by quantifying
this heterogeneity, devices can be clustered based on the similarity
of their data distributions. However, practitioners must carefully
consider the exact choice of data summary, given the privacy and

35

EdgeSys ’21, April 26, 2021, Online, United Kingdom Wang and Wolfrath , et al.

0 1000 2000 3000 4000 5000 6000 7000
Time elapsed (sec)

20

40

60

80

A
cc

ur
ac

y

Comparison

P(y)

P(X/y)

Loss

Random

Figure 5: Full Comparison: Evaluation of all policies under
consideration.

Table 4: Training time for each method and relative perfor-
mance compared to random selection

Method random 𝑝 (𝑦𝑖) 𝑝 (𝑋𝑖 |𝑦𝑖) loss
Duration (sec) 7578.90 3200.65 3331.22 4127.01
Reduction in
Training Time

0% 58% 56% 46%

data size implications. We believe that identifying other data sum-
maries and enumerating their properties would be a interesting
research direction.

In section 3, we concluded that if there is representation of each
data distribution in the training process, device dropout will not
have a substantial impact on the training time and accuracy. We
believe we can leverage our current clustering methods to ensure
that devices from each data distribution can be represented in the
training process in the event of dropout. This can be used to provide
some level of fault tolerance in addition to the original goal of
accelerating training.

Our work mainly focuses on clustering of devices based on the
statistical information obtained about data at each device. The
selection of devices from each cluster is currently based on solely the
processing speed, which is only one kind of system heterogeneity.
There are other factors that can be profiled like the battery power,
storage capacity, stability of device and so on.We believe accounting
for these factors will significantly improve the training convergence
time.

7 CONCLUSION
In Federated Learning, the subset of devices taking part in the
training process from a pool of millions should be selected based
on certain set of features. Many of the existing works focus on
random sampling [3] or processing capacity of devices [5]. Most
of them are not taking into consideration the properties of data
itself. In this paper we explore similarity in data distribution across
different devices to select a subset for training during each epoch.
We propose three methods for evaluating the similarity of device
data: (1) Label distribution (2) Feature distribution conditioned
over labels (3) Loss per epoch for each device. Once the devices
are clustered, a device from each cluster is selected based on the
processing capacity. Our experiments show 46% to 58% reduction

in training time as compared to random selection to reach the same
level of accuracy.

ACKNOWLEDGMENTS
This research was supported in part by the NSF under grant CNS-
1717834.

REFERENCES
[1] 2014. MNIST Variations. https://sites.google.com/a/lisa.iro.umontreal.ca/public_

static_twiki/variations-on-the-mnist-digits. Accessed: 2021-02-22.
[2] 2017. Federated Learning: Collaborative Machine Learning without Cen-

tralized Training Data. https://ai.googleblog.com/2017/04/federated-learning-
collaborative.html. Accessed: 2021-02-25.

[3] Keith Bonawitz et al. 2019. Towards Federated Learning at Scale: System Design.
In Proceedings of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA,
USA, March 31 - April 2, 2019. mlsys.org. https://proceedings.mlsys.org/book/
271.pdf

[4] Sebastian Caldas et al. 2018. LEAF: A Benchmark for Federated Settings.
arXiv:1812.01097 [cs.LG] https://arxiv.org/abs/1812.01097

[5] Zheng Chai et al. 2020. TiFL: A Tier-Based Federated Learning System. In
Proceedings of the 29th International Symposium on High-Performance Parallel
and Distributed Computing (Stockholm, Sweden) (HPDC ’20). Association for
Computing Machinery, New York, NY, USA, 125–136.

[6] Brendan McMahan et al. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial Intelligence and Statistics. PMLR,
1273–1282.

[7] Lumin Liu et al. 2019. Client-Edge-Cloud Hierarchical Federated Learning. (2019).
arXiv:arXiv:1905.06641 https://arxiv.org/abs/1905.06641

[8] Rie Kubota Ando et al. 2005. A framework for learning predictive structures
from multiple tasks and unlabeled data. Journal of Machine Learning Research 6,
Nov (2005), 1817–1853.

[9] Virginia Smith et al. 2017. Federated multi-task learning. Advances in neural
information processing systems 30 (2017), 4424–4434.

[10] Yann LeCun et al. 1998. Gradient-based learning applied to document recognition.
Proc. IEEE 86, 11 (1998), 2278–2324.

[11] Yujun Lin et al. 2017. Deep gradient compression: Reducing the communication
bandwidth for distributed training. arXiv preprint arXiv:1712.01887 (2017).

[12] Yang Liu et al. 2020. Fedvision: An online visual object detection platform
powered by federated learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 13172–13179.

[13] Yuanli Wang et al. 2020. Poster: Exploiting Data Heterogeneity for Performance
and Reliability in Federated Learning. In 2020 IEEE/ACM Symposium on Edge
Computing (SEC). 164–166. https://doi.org/10.1109/SEC50012.2020.00023

[14] Yufeng Zhan et al. 2020. Experience-Driven Computational Resource Allocation
of Federated Learning byDeep Reinforcement Learning. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 234–243.

[15] Zichen Xu et al. 2019. Exploring Federated Learning on Battery-Powered Devices.
In Proceedings of the ACM Turing Celebration Conference - China (Chengdu, China)
(ACM TURC ’19). Association for Computing Machinery, New York, NY, USA,
Article 6, 6 pages.

[16] Kevin Hsieh et al. 2017. Gaia: Geo-Distributed Machine Learning Approaching
LAN Speeds. In Proceedings of the 14th USENIX Conference on Networked Systems
Design and Implementation (NSDI’17). 629–647.

[17] Kevin Hsieh et al. 2020. The non-iid data quagmire of decentralized machine
learning. In International Conference on Machine Learning. PMLR, 4387–4398.

[18] T. Kailath. 1967. The Divergence and Bhattacharyya Distance Measures in Signal
Selection. IEEE Transactions on Communication Technology 15, 1 (1967), 52–60.

[19] Peter Kairouz et al. 2019. Advances and Open Problems in Federated Learning.
CoRR abs/1912.04977 (2019). http://arxiv.org/abs/1912.04977

[20] Dhruv Kumar et al. 2019. DeCaf: Iterative Collaborative Processing over the
Edge. In HotEdge.

[21] Fan Lai et al. 2020. Oort: Informed Participant Selection for Scalable Federated
Learning. arXiv preprint arXiv:2010.06081 (2020).

[22] Shiqiang Wang et al. 2018. When edge meets learning: Adaptive control for
resource-constrained distributed machine learning. In IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 63–71.

[23] Timothy Yang et al. 2018. Applied Federated Learning: Improving Google Key-
board Query Suggestions. arXiv:1812.02903 [cs.LG] https://arxiv.org/abs/1812.
02903

[24] Yue Zhao et al. 2018. Federated Learning with Non-IID Data.
arXiv:1806.00582 [cs.LG] https://arxiv.org/abs/1806.00582

36

https://sites.google.com/a/lisa.iro.umontreal.ca/public_static_twiki/variations-on-the-mnist-digits
https://sites.google.com/a/lisa.iro.umontreal.ca/public_static_twiki/variations-on-the-mnist-digits
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://proceedings.mlsys.org/book/271.pdf
https://proceedings.mlsys.org/book/271.pdf
https://arxiv.org/abs/1812.01097
https://arxiv.org/abs/1812.01097
https://arxiv.org/abs/arXiv:1905.06641
https://arxiv.org/abs/1905.06641
https://doi.org/10.1109/SEC50012.2020.00023
http://arxiv.org/abs/1912.04977
https://arxiv.org/abs/1812.02903
https://arxiv.org/abs/1812.02903
https://arxiv.org/abs/1812.02903
https://arxiv.org/abs/1806.00582
https://arxiv.org/abs/1806.00582

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Impact of Data Heterogeneity
	3.1 Intermittent availability of devices
	3.2 Permanent dropping of devices

	4 Exploiting Data Heterogeneity
	5 Evaluation
	6 Discussion
	7 Conclusion
	Acknowledgments
	References

