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ABSTRACT
Modern applications are increasingly generating and per-
sisting data across geo-distributed data centers or edge clus-
ters rather than a single cloud. This paradigm introduces
challenges for traditional query execution due to increased
latency when transferring data over wide-area network links.
Join queries in particular are heavily affected, due to their
large output size and amount of data that must be shuf-
fled over the network. Join sampling—computing a uniform
sample from the join results—is a useful technique for reduc-
ing resource requirements. However, applying it to a geo-
distributed setting is challenging, since acquiring indepen-
dent samples from each location and joining on the samples
does not produce uniform and independent tuples from the
join result. To address these challenges, we first generalize an
existing join sampling algorithm to the geo-distributed set-
ting. We then present our system, Plexus, which introduces
three additional optimizations to further reduce the network
overhead and handle network and data heterogeneity: (i)
weight approximation, (ii) heterogeneity awareness and (iii)
sample prefetching. We evaluate Plexus on a geo-distributed
system deployed across multiple AWS regions, with an im-
plementation based on Apache Spark. Using three real-world
datasets, we show that Plexus can reduce query latency by
up to 80% over the default Spark join implementation on a
wide class of join queries without substantially impacting
sample uniformity.
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1 INTRODUCTION
Large organizations collect and persist vast amounts of data
in a geo-distributed manner [4, 11]. For example, Alibaba
manages tens of geo-distributed data centers (DCs), each
containing millions of tables, which are used to process mil-
lions of cross-DC analytical jobs every day [11]. Persisting
data in edge clusters or data centers close to the end users
provides several benefits, including low latency response
times for users and compliance with data regulation laws.
However, this trend presents challenges for efficient data
analytics, especially when join queries are involved as they
shuffle sizable amounts of data over the wide area network
and generate very large outputs [23]. Generating a random
sample from a join and performing analytics against the sam-
ple rather than the full join result is a cost-effective way to
address this limitation [10]. If the tuples in the join result
are sampled uniformly and independently, they can be used
for a wide variety of analytical tasks, including estimating
aggregate functions and building machine learning models
for regression, classification, etc. Sampling can also handle
arbitrary selection predicates, which makes it a desirable
approach for approximating query results. However, when
data is geo-distributed in nature, existing join approxima-
tion algorithms become increasingly I/O bound. In an initial
experiment, we observed 3-4x performance penalty when
computing approximate joins with geo-distributed tables
rather than tables located in the same regional data center.
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Shuffling large tables over the wide-area network (WAN)
causes the geo-distributed implementation to scale poorly
as the data size increases. This illustrates the need for more
efficient join sampling algorithms in the wide-area.

A substantial amount of research has been conducted to in-
vestigate join sampling algorithms, but these algorithms are
designed to run in a centralized fashion [5, 7, 17, 22, 29, 38].
These techniques are useful starting points for exploring the
geo-distributed setting, but are not scalable per se since the
designs emphasize CPU efficiency rather than I/O efficiency.
Systems designed for distributed join computation are also
prevalent, but the distributed aspects are confined to a single
location [3, 21, 26]. The task is to optimize join computation
or sampling on a cluster operating within a single data cen-
ter. These approaches are generally still required to shuffle
all tuples participating in the join over the network, which
introduces a large penalty when high-speed local networks
are swapped for the slower, more heterogeneous WAN.
Geo-distributed analytics systems have introduced opti-

mizations for addressing constraints imposed by the WAN,
including the optimal placement of tasks [24] and scheduling
techniques to reduce query latency orWAN traffic [25, 32, 33].
However, these frameworks are agnostic to the operation
and data characteristics, which are important to exploit. Fur-
thermore, in the case of join computation, these techniques
often generate wide-area traffic linear in the number of tu-
ples being joined, which may be extremely large [24]. Join
query optimization has been proposed in a distributed set-
ting, but it is limited to joins that evaluate an aggregate
function [14]. We argue that approximate joins are a better
fit for the wide-area since the amount of shuffled data has the
potential to be much smaller. While it is trivial to produce a
sample from a join while generating less WAN traffic, it is
challenging to design an algorithm that can reduce traffic and
generate a uniform sample, i.e. ensure that each tuple in the
full join result is sampled with equal probability. To address
these challenges, we generalize a centralized join sampling
algorithm to the geo-distributed setting while maintaining
sample uniformity. We then propose additional optimiza-
tions to further reduce the network traffic and address the
heterogeneity present in the geo-distributed deployment.
Contributions. We make the following contributions:

• We generalize an existing join sampling algorithm in non-
trivial ways to adapt to the geo-distributed setting.
• We present Plexus, a system that introduces three opti-
mizations to the geo-distributed join sampling algorithm
to further reduce the network overhead and handle net-
work and data heterogeneity: (i) weight approximation,
(ii) heterogeneity awareness and (iii) sample prefetching.
• We explore a key trade-off in join sampling between sam-
ple or data uniformity and query latency.

• We implement Plexus on a Spark-based analytics platform,
and evaluate it across a set of geo-distributed sites.
• Using three real-world datasets, we show that Plexus can
reduce query latency by up to 80% over the default Spark
join implementation on a wide class of join queries with
negligible impact to sample uniformity.

We show that Plexus is a more scalable alternative for com-
puting joins in the wide-area and can substantially reduce
query latency using the above approaches.

2 PRELIMINARIES
2.1 Join Sampling
Join operations are a fundamental building block for analyt-
ics over relational data. However, computing a join can be
expensive; in the worst case, computing a join over a set of
tables𝑇1,𝑇2, ... ,𝑇𝑛 involves producing the Cartesian product
of the selected tables, which generates

∏
𝑖 | 𝑇𝑖 | tuples in the

result, where | 𝑇𝑖 | is the cardinality of𝑇𝑖 . Approximating the
join is an appealing alternative, since it avoids much of the
computation and shuffling required to produce the full result.
While some approximation techniques focus on estimating
specific functions of the data, such as aggregates [7, 17, 26],
we focus on sampling from joins, a general approximation
technique that can be used for a wide variety of analytical
tasks. Generating uniform samples from a join is a challeng-
ing problem, since it is insufficient to simply collect samples
from each table and join on the samples [10]. For example,
consider a join of two tables, 𝑇1 Z 𝑇2, with keys {𝑘0, 𝑘1}
in 𝑇1 and keys {𝑘0, 𝑘2} in 𝑇2. If we sample individual tables
and only obtain 𝑘1 keys from 𝑇1 and 𝑘2 keys from 𝑇2, then
the resulting join is the empty set. For sampling to work,
tuples must be selected with a probability proportional to their
frequency in the join result. Sampling tables directly produces
independent but not uniform samples from the join result
and requires large sample sizes [16].

The task is further complicated by considering properties
of geo-distributed data sources. We assume that tables par-
ticipating in the join are distributed geographically across
multiple sites [4, 11]. The main challenge is the difference in
performance between the WAN and a data center network.
The WAN is substantially slower and more heterogeneous,
which creates a bottleneck for existing sampling algorithms.
Reducing query latency in this setting largely depends on
making efficient use of the network.

2.2 Problem Statement
We consider a geo-distributed system composed of a set of
tables {𝑇𝑖 | 𝑖 ∈ 1..𝑛} partitioned arbitrarily across a set
of sites {𝑠 𝑗 | 𝑗 ∈ 1..𝑚}. For a given table 𝑇𝑖 , we use the
notation𝑇𝑖, 𝑗 to denote the subset of the table𝑇𝑖 that exists at
site 𝑗 . Figure 1 shows our system model, with 𝑛 = 3 tables
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Figure 1: System model.

partitioned across 𝑚 = 4 sites. We assume that the tables
consist of at least one key column, which will be used to
join tables, along with one or more value columns. The task
is to produce uniform and independent samples from the
multi-way (equi-)join 𝑇1 Z ... Z 𝑇𝑛 . Furthermore, we seek
to minimize the query latency associated with computing
these samples. While our objective is to obtain uniform and
independent samples from the join result, we also explore
options for relaxing the uniformity requirement in an effort
to reduce query latency.

2.3 Centralized Sampling with Exact
Weights

The recent join sampling work by Zhao et al. [38] proposes
an algorithm called "Exact Weights" which computes uni-
form and independent samples from join results. We briefly
discuss their centralized join sampling algorithm, before gen-
eralizing it to the geo-distributed setting.

To realize uniform and independent samples from the join,
we need to associate a weight with each tuple and perform
weighted random sampling from the original tables using
probabilities proportional to the weights [38]. Two sequen-
tial passes over the participating tables are required to com-
pute this sample. The first pass performs weight generation
and aggregates weights for the keys in each table, which are
needed to maintain sample uniformity. The second pass per-
forms sample collection from each table using these weights.
We begin by defining weights in this context.

Definition 2.1. The weight𝑤 (𝑡) associated with tuple 𝑡 in
𝑇𝑖 , is the frequency of that tuple in the (partial) join result
𝑇𝑖 Z 𝑇𝑖+1 Z ... Z 𝑇𝑛 . We also define𝑤 (𝑡) = 1 for all 𝑡 ∈ 𝑇𝑛 .

Weight Generation. The objective of weight generation
is to compute𝑤 (𝑡) for each tuple. Note that our definition
implies that the weights for 𝑇1 represent the frequency of
each tuple in the full join result, since they are computed for
𝑇1 Z ... Z 𝑇𝑛 . Weight generation makes a backward pass

over the tables, beginning at 𝑇𝑛 (where 𝑤 (𝑡) = 1 for all 𝑡 )
and terminating at 𝑇1.

Definition 2.2. For a given table 𝑇𝑖 and join key 𝑘 , define
𝑤𝑘 =

∑
𝑤 (𝑡) for all tuples 𝑡 ∈ 𝑇𝑖 with join key 𝑘 .

Using this definition, we observe that the weight gener-
ated for key 𝑘 at a given table 𝑇𝑖 is equal to the value of𝑤𝑘

in the previous table (which is 𝑇𝑖+1 since we are making a
backward pass). To illustrate this process, we consider an ex-
ample task of generating weights over three tables, as shown
in figure 2a. To build up the weights, the algorithm makes a
backward pass over the tables (i.e. starting with𝑇3 and termi-
nating at𝑇1). The weights stored in each table only represent
the frequency of that tuple in a join with the tables already
visited. So the weights in 𝑇2 represent the frequency of that
tuple in a join with 𝑇3 and the weights in 𝑇1 will represent
the frequency in the full join 𝑇1 Z 𝑇2 Z 𝑇3. Tuples in 𝑇3
are defined to have a weight of 1, which allows weights in
subsequent tables to simply be 𝑤𝑘 , the sum of weights with
matching keys in the previous table. These weights can be
computed iteratively or with dynamic programming.

Sample Collection. Once we have weights, we can make a
forward pass over the tables and perform weighted random
sampling with replacement to produce a uniform sample
from the join. For example, assume we wish to collect two
samples from the join using the weights computed in figure
2a. Beginningwith𝑇1, we convert theweights to probabilities,
which yields 0.25 for each 𝐴 key tuple and 0.5 for the 𝐵 key,
as illustrated in figure 2b. If our random sampling yields one
𝐴 key and one 𝐵 key (indicated by the gray color in figure 2b),
we will now move to table 𝑇2 and randomly select a single
sample from each key obtained from 𝑇1. The weights are
converted to sampling probabilities within each key group,
i.e. by computing𝑤 (𝑡)/𝑤𝑘 . Since there is only one𝐴 key, we
select that sample from𝑇2. For the 𝐵 key, we have two tuples
each with weight 1, so we assign probability 1/2 to both
tuples and draw one. The final table only has one tuple for
each key, so no random sampling is required. Concatenating
these sampled tuples from each table produces a uniform
sample from the join. Note that key𝐶 does not appear in the
final join result, since its weight will never propagate to 𝑇2
or 𝑇1 during weight generation.

3 GEO-DISTRIBUTED JOIN SAMPLING
Having described the centralized Exact Weights sampling
algorithm, we now generalize each of the phases to the geo-
distributed setting. Algorithm 1 shows the pseudocode for
our geo-distributed exact weights algorithm.
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(a) Weight generation phase.
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(b) Sample collection phase.

Figure 2: Centralized Sampling with Exact Weights over three tables.

Weight Generation. In the geo-distributed setting, tables
can be partitioned across multiple sites. We can utilize the
dynamic programming approach for the geo-distributed case,
but we require additional steps to aggregate the weights from
each site prior to computing weights for the next table.

Definition 3.1. For a given table and join key 𝑘 , we define
𝑤𝑘,𝑖 to be the sum of weights for all tuples at site 𝑖 that have
join key 𝑘 .

It follows immediately from this definition that we can
compute 𝑤𝑘 =

∑
𝑖 𝑤𝑘,𝑖 , which computes the total weight

for a given key across sites (consistent with definition 2.2).
Following the tables in Figure 2, the geo-distributed weight
generation process begins with the last table in the join, 𝑇3,
assigning a value of 1 to each tuple. We then query (in par-
allel) the local weights for all edges that contain 𝑇3,𝑖 , which
gives us𝑤𝑘,𝑖 for each site. This is followed by summing the
weights for any keys that exist at multiple sites (which pro-
duces𝑤𝑘 ) and sending the resulting aggregated weights (𝑤𝑘

for all 𝑘) to each site that contains 𝑇2,𝑖 . This step is repeated
to generate weights for𝑇1, after which all tuples have the cor-
rect sampling weights needed to generate uniform samples
from the join result. The first part of Algorithm 1 outlines
this flow in the geo-distributed setting.

Sample Collection. Once exact weights have been com-
puted for each partitioned table, we can proceed with the
sample collection phase. The second part of Algorithm 1 out-
lines the sample collection phase at a high level. This phase
begins by first partitioning the sample size according to the
sum of the tuple weights at each site, which is required to
maintain sample uniformity. Once we have a sample size for
each site, we query (in parallel) all sites containing 𝑇1,𝑖 (the
first table in the join), where tuples are drawn by weighted
random sampling with replacement. Once the first table has
been sampled, the resulting keys from each site are counted
and form the sample sizes for keys in the next table. When
the next table is sampled, weighted random sampling with
replacement is performed at the key level. As an example,
assume two sites 𝑠1 and 𝑠2 have tuples with a given key 𝑘 and

the sum of weights for those tuples is𝑤𝑘,1 = 5 and𝑤𝑘,2 = 15
at each site respectively, which yields 𝑤𝑘 = 20. Then, for
each sample, we first select a site at random, with 𝑠1 having
probability 0.25 and 𝑠2 having probability 0.75, then a tuple
can be sampled from the selected site. In practice, we can use
a multinomial distribution to randomly generate samples
sizes for each site in one operation, then samples can be
collected from each site in parallel.

Zhao et al. [38] showed that using the Exact Weights algo-
rithm to perform weighted random sampling with replace-
ment will result in a uniform sample from the join result;
what remains to be shown is that collecting samples from
sites proportional to their key weight maintains uniformity.

Theorem. The geo-distributed exact weights algorithm gen-
erates a uniform sample from the full join result.

Proof. To maintain uniformity, an arbitrary tuple 𝑡 with join
key 𝑘 must be selected with probability proportional to its
generated weight[38], i.e. with probability𝑤 (𝑡)/𝑤𝑘 . In the
geo-distributed case, each tuple exists at a given site, so to
be selected, the site must be independently sampled first,
then the tuple sampled using the local weights at the site.
A tuple 𝑡 with key 𝑘 at site 𝑖 is sampled with probability
(𝑤𝑘,𝑖/𝑤𝑘 ) x (𝑤 (𝑡)/𝑤𝑘,𝑖 ) which reduces to 𝑤 (𝑡)/𝑤𝑘 . There-
fore, the resulting sample is uniform.

4 PLEXUS: OPTIMIZING
GEO-DISTRIBUTED JOIN SAMPLING

The geo-distributed exact weights algorithm (Algorithm 1)
has some inherent scaling limitations. First, aggregating
weights for each tuple/key and collecting samples can be
network intensive. The algorithm is also sequential as it
systematically generates weights and collects samples. Fur-
thermore, the network can be heterogeneous in terms of
the link bandwidths of the sites and the data distribution
across the sites can also be non-uniform. We now present
our geo-distributed join sampling framework called Plexus
that is designed to overcome these limitations by introducing
various optimizations to the exact weights algorithm.
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Algorithm 1: Geo-Distributed Exact Weights
Input: List of sites and tables, Sample Size, Target Query
Result: Uniform and Independent Join Samples

// Weight Generation
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑊𝑒𝑖𝑔ℎ𝑡𝑠 ← []
for 𝑡𝑎𝑏𝑙𝑒 in reverse(𝑡𝑎𝑏𝑙𝑒𝑠) do

for 𝑠𝑖𝑡𝑒 in 𝑠𝑖𝑡𝑒𝑠 do
if 𝑡𝑎𝑏𝑙𝑒 exists at 𝑠𝑖𝑡𝑒 then

generateWeightsAsync(𝑠𝑖𝑡𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑊𝑒𝑖𝑔ℎ𝑡𝑠)
end

end
blockWaitingForWeights()
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑊𝑒𝑖𝑔ℎ𝑡𝑠 ← mergeWeightsForTable(𝑡𝑎𝑏𝑙𝑒)

end

// Sample Collection
𝑗𝑜𝑖𝑛𝑆𝑎𝑚𝑝𝑙𝑒 ← []
𝑘𝑒𝑦𝑠 ← []
for 𝑡𝑎𝑏𝑙𝑒 in 𝑡𝑎𝑏𝑙𝑒𝑠 do

for 𝑠𝑖𝑡𝑒 in 𝑠𝑖𝑡𝑒𝑠 do
if 𝑡𝑎𝑏𝑙𝑒 exists at 𝑠𝑖𝑡𝑒 then

𝑠𝑖𝑧𝑒𝑠 ← getSampleSizes(𝑠𝑖𝑡𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑘𝑒𝑦𝑠)
collectSamplesAsync(𝑠𝑖𝑡𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑠𝑖𝑧𝑒𝑠)

end
end
blockWaitingForSamples()
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ← aggregateSamplesForTable(𝑡𝑎𝑏𝑙𝑒)
𝑘𝑒𝑦𝑠 ← getKeysForNextTable(𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
𝑗𝑜𝑖𝑛𝑆𝑎𝑚𝑝𝑙𝑒 ← concatenate( 𝑗𝑜𝑖𝑛𝑆𝑎𝑚𝑝𝑙𝑒, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

end

return 𝑗𝑜𝑖𝑛𝑆𝑎𝑚𝑝𝑙𝑒

4.1 Weight Approximation
The weights generated for every table at each site are a major
source of network traffic. The exact weights algorithm gener-
ates traffic that is linear in the number of keys, which could
equal the number of tuples in the entire table in the worst
case. Generating this amount of traffic could substantially
increase the overall query execution time.
One option for reducing traffic would be to transfer a

sketch of the weights, rather than the actual weights. A
Count-Min sketch could provide approximate weights and
uses space that is sublinear in the number of keys [6]. How-
ever, using this kind of sketch presents a few problems for
weight approximation: (1) false positives could cause us to
sample keys not actually present in the join, (2) the upper
bound on the error for each weight is linear in the number of
tuples, and (3) the sketch must be the same size for each site
to be merged, regardless of the number of weights at each
site. For these reasons, we consider an alternative approach
for weight approximation.

To address all three shortcomings of weight sketching, we
propose sending only a random sample of the weights over
the wide-area network. For a given table and join key 𝑘 , let
𝑤𝑘,𝑖 denote the true value of 𝑘’s weight at site 𝑖 . We assign
a probability 𝑝𝑘,𝑖 to each weight and perform Poisson sam-
pling to obtain a subset of the weights to send over the WAN.
The sampling probabilities are generated using an existing
algorithm [37] which computes 𝑝𝑘,𝑖 = 𝑤2

𝑘,𝑖
/(𝑤2

𝑘,𝑖
+𝐶𝑖 ), for a

constant𝐶𝑖 that depends on the sample size for site 𝑖 . Weights
that are not sampled are assumed to be zero. If a weight is
sampled, we send the estimate �̂�𝑘,𝑖 = 𝑤𝑘,𝑖/𝑝𝑘,𝑖 over the net-
work, rather than the true value of the weight. Sampling with
these probabilities and using �̂�𝑘,𝑖 as an estimator for the true
weight is known to be an unbiased sampling scheme [37].
Furthermore, it follows immediately that �̂�𝑘 =

∑
𝑖 �̂�𝑘,𝑖 is an

unbiased estimator for𝑤𝑘 , due to the linearity of expectation.
This is an important insight, since unbiasedness guarantees
the weights produced at each site are correct in expectation.
The join samples generated by our system will be consistent
(in expectation) with the true distribution of keys in the full
join result and the weights in the final table can also be used
for unbiased join size estimation.

Weight Sample Size Estimation. To use sampling as our
weight approximation technique, we require a mechanism
for determining how many weights𝑤𝑘,𝑖 to transfer over the
WAN from site 𝑖 . We define a weight error bound 𝜖 which
is used to bound the average standard error for the local
weights. For all keys 𝑘 at site 𝑖 , we require a sample size
large enough, such that:

1
| 𝑘 |

∑︁
𝑘

√︁
Var[�̂�𝑘,𝑖 ] ≤ 𝜖 (1)

where | 𝑘 | is the number of unique keys at site 𝑖 . This design
allows for more samples to be assigned to sites with more
weights or larger weights, which was a limitation associated
with sketching. However, there is no way to allow the sample
size to scale with the network or compute capacity at each
site. This would require a-priori knowledge of which keys in
the join result exist at each site, whichwe assume is unknown
until the weight generation phase is completed. We explore
alternative ways of leveraging heterogeneity in the system
in section 4.2.

4.2 Heterogeneity Awareness
There are two main sources of heterogeneity in our setting:
network heterogeneity and data heterogeneity. We explore
methods to improve performance by exploiting heterogene-
ity while controlling for the effect this may have on query
accuracy. This analysis assumes an awareness of the network
and data heterogeneity present in the system; we discuss
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mechanisms for estimating these quantities in section 4.3.

Network Heterogeneity. An important property of geo-
distributed systems is the network heterogeneity, both in
terms of average throughput and variance. While sampling
reduces the overhead of a full join computation, sending sam-
ples over the network still generates a non-trivial amount
of network traffic, which impacts query latency in the wide-
area. While we cannot avoid sending this data, we can at-
tempt to reduce the query latency by exploiting the network
heterogeneity.

During sample collection, we can reduce the overall query
latency by requesting more data from the lower-latency sites,
assuming the same keys are present at multiple sites. If we
simply seek to minimize latency, we can solve the following
optimization problem to determine how many samples to
collect from each site:

min
𝑛

max(ℓ (𝑛1), ℓ (𝑛2), ... , ℓ (𝑛𝑚))

s.t.
𝑚∑︁
𝑖=1

𝑛𝑖 = 𝑆
(2)

where 𝑆 is the total number of samples requested across all
sites and ℓ (𝑛𝑖 ) is the estimated latency required to transfer
𝑛𝑖 samples from site 𝑖 . We further assume that the latency
has the form ℓ (𝑛𝑖 ) = 𝑛𝑖 / 𝑏𝑖 , where 𝑏𝑖 represents the band-
width for the connection to site 𝑖 . Then the maximum latency
(makespan) is minimized by setting the sample sizes propor-
tional to the expected throughput for each site, i.e. by setting
𝑛𝑖 = 𝑆 (𝑏𝑖/

∑
𝑗 𝑏 𝑗 ).

Data Heterogeneity. Deriving sample sizes proportional
to each site’s latency will minimize overall query latency
and preserve the distribution of join keys, but it has the
potential to bias queries that depend on other columns in the
tables. If we make a strong assumption that the tuples are
independent and identically distributed (IID) across all sites,
then skewing sample sizes in favor of performance has no
effect. However, this assumption is unrealistic in practice.
Since sites may exist in different time zones and collect data
from different populations, it is reasonable to assume that
some heterogeneity is present across sites and needs to be
accounted for.

We assume each site has data following a unique data dis-
tribution. Therefore, a given column C in the join result can
be modeled as a random variable with a mixture distribution,
i.e. C ∼ ∑

𝑖 \𝑖𝐹𝑖 (𝑥) where each 𝐹𝑖 is the cumulative distribu-
tion function1 (CDF) and \𝑖 = 𝑛𝑖 /

∑
𝑗 𝑛 𝑗 is the fraction of

1This formulation focuses on continuous variables, but alternatives are
available for the discrete case, without loss of generality.
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Figure 3: A mixture distribution can be skewed toward
the fast site with a bound 𝛿 .

samples obtained from site 𝑖 . We can then add the following
constraint to the optimization problem in equation 2:

max |
∑︁
𝑖

\𝑖𝐹𝑖 (𝑥) − 𝐹 (𝑥) | ≤ 𝛿 (3)

which requires that the maximum absolute distance between
the heterogeneity aware CDF and the true mixture CDF,
𝐹 (𝑥), for the column C in the join result is at most 𝛿 . This
bound on the performance bias is similar to how the KS-
test works for measuring distribution similarity, and 𝛿 can
be selected in a way that corresponds to the KS-test at a
specified significance level. Requiring the user to specify 𝛿
rather than simply running a KS-test forces a selection of
an effect size, and avoids the issues where the test detects
differences too small to matter [18]. Figure 3 illustrates how
this optimization works in practice. The two dotted CDFs
represent the data distribution at two separate sites, one
designated a fast site and the other slow. Data is drawn from
a normal distribution, with ` = 10 for the fast site and ` = 20
for the slow site (𝜎 is fixed at 5 for both sites). To minimize
latency, we have a preference for collecting more data from
the fast site (and skewing the CDF in that direction). The
solid line represents the true mixture distribution when data
is selected uniformly from each site (i.e. \ 𝑓 𝑎𝑠𝑡 = \𝑠𝑙𝑜𝑤 = 0.5).
If we set 𝛿 = 0.1, the dashed blue line represents the degree
we are allowed to bias the performance toward the faster
site. The closer we get to the faster site CDF, the smaller the
resulting query latency.

Adding this constraint to the optimization greatly compli-
cates the problem and makes it more expensive to solve. This
is caused by the fact that we must use empirical distribution
functions in practice, not theoretical ones, so we need to iter-
ate over our estimates to evaluate them. We use a hill climb-
ing approach in Plexus for solving the problem (algorithm 2).
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Figure 4: The Plexus pipeline. Wherever possible, network intensive operations are executed in parallel with
compute intensive operations to avoid resource contention.

The algorithm begins by computing the latency-optimal allo-
cation to determine if that satisfies the CDF constraint. This
requires solving the unconstrained problem (eq. 2) which is
efficient and only requires computation linear in the number
of sites. If the latency-optimal allocation is not a feasible so-
lution, we begin the hill-climbing approach, initialized with
the point in the domain that represents the true mixture
distribution. At each optimization step, we select two sites
at random and determine which site has a lower sampling
latency. We then attempt to move a proportion of the re-
quested sample size (𝛼) from the slower site (𝑠𝑠𝑙𝑜𝑤) to the
faster site (𝑠𝑓 𝑎𝑠𝑡 ). More specifically, we need to select the
maximum value 𝛼 ∈ [0, \𝑠𝑙𝑜𝑤] such that for all points in the
CDF domain, 𝛼 satisfies:

| (\ 𝑓 𝑎𝑠𝑡 + 𝛼)𝐹𝑓 𝑎𝑠𝑡 + (\𝑠𝑙𝑜𝑤 − 𝛼)𝐹𝑠𝑙𝑜𝑤 +
∑︁

𝑖≠𝑓 𝑎𝑠𝑡

𝑖≠𝑠𝑙𝑜𝑤

\𝑖𝐹𝑖 − 𝐹 | ≤ 𝛿

which allows 𝛼 to represent the proportion of the sample
allocation we can move from the high latency site to the
low latency site. Computing 𝛼 can be done analytically by
solving the quadratic equation:(

𝛼𝑥 [𝐹𝑓 𝑎𝑠𝑡 − 𝐹𝑠𝑙𝑜𝑤] +
∑︁
𝑖

\𝑖𝐹𝑖 − 𝐹
)2
− 𝛿2 = 0 (4)

for each point in the CDF domain and setting 𝛼 = min {𝛼𝑥 },
which requires time linear in the number of data points used
to represent the mixture distribution CDF.

4.3 Sample Prefetching
Another limitation of the exact weights algorithm is that it is
sequential. Weights must be computed and samples must be
collected for a single table at a time, with no parallelism. To
address this shortcoming, Plexus attempts to speculatively

Algorithm 2: Network Traffic Optimization

\ ← latency-optimal allocation
if \ satisfies eq. 3 then

return \

end

\ ← true mixture allocation
while Time Remaining do

𝑠1, 𝑠2← random sites s.t. 𝑠1 ≠ 𝑠2
𝑠𝑓 𝑎𝑠𝑡 , 𝑠𝑠𝑙𝑜𝑤 ← The lower and higher latency site
respectively between 𝑠1 and 𝑠2

𝛼 ← max change in allocation from 𝑠𝑠𝑙𝑜𝑤 to 𝑠𝑓 𝑎𝑠𝑡
which satisfies eq. 3. Computed directly by solving eq.
4.

\ [𝑠𝑠𝑙𝑜𝑤] ← \ [𝑠𝑠𝑙𝑜𝑤] − 𝛼
\ [𝑠𝑓 𝑎𝑠𝑡 ] ← \ [𝑠𝑓 𝑎𝑠𝑡 ] + 𝛼

end
return \

collect samples in parallel before they are required in the
sample collection phase. This reduces the time spent per-
forming sample collection since any samples that have been
prefectched can be used directly without being fetched from
the remote sites.
In theory, we could continuously prefetch samples for

a given table as soon as we have finished generating the
table’s weights. However, each site may have multiple tables
and we need to avoid penalizing other weight generation or
sampling jobs. For this reason, we incorporate prefetching as
part of a larger pipeline, which ensures that two network (or
CPU) intensive operations are not executing concurrently
at a single site. We introduce an orchestrator task, which
is responsible for aggregating results from each site and
producing the final join result. Since sample prefetching is
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Figure 5: Overview of Plexus Implementation

a network-intensive operation, it is performed while CPU
intensive operations are being executed at each site.

Figure 4 illustrates one instantiation of this pipeline, using
the same three tables from the example in section 3, parti-
tioned across two sites. Weights are generated for 𝑇3 first,
following the steps specified in algorithm 1. Next, weights
for 𝑇2 are generated and samples for 𝑇3 are prefetched in
parallel, since weight generation is compute intensive and
prefetching is network intensive. Once the weights for𝑇2 are
generated, prefetching is stopped and the weights are trans-
ferred to the orchestrator. This parallel process is repeated
for 𝑇2 and 𝑇1, which completes the weight generation phase.
The only parallel operation that occurs during sample col-
lection is the orchestrator solving the network optimization
problem (algorithm 2) for the next table while samples are
being collected from the current table.

Sample prefetching is not guaranteed to produce samples
that will participate in the join, which is a limitation of this
approach. When samples are prefetched, we have the local
table weights available, but it is unknown if any of those
tuples join with the next table. We find that it works well in
practice (section 5.4), but it is not guaranteed. Our prefetched
samples serve a purpose, even if they do not participate in the
join. First, the data transfer can be used to estimate network
conditions, which is required to take advantage of network
heterogeneity. Secondly, the samples themselves can be used
to measure data similarity across sites, which may be used to
guide the degree to which we exploit network heterogeneity.

4.4 Implementation
Our implementation of Plexus consists of two components:
an orchestrator task and a client task, which can be run on a

single machine or distributed across many. Communication
between tasks is performed using an Apache Kafka instance,
which we always run on the same machine as the orches-
trator. The orchestrator uses Kafka to send commands to
each site, where most of the computation is performed. The
clients use Apache Spark [35] for processing the local data
at each site and send acknowledgements to the orchestrator
after each task is complete. The client spawns a new thread
to process each inbound command, which allows for tasks
to be performed in parallel, such as weight generation and
sample prefetching. When file transfers are required, data is
sent over an ftp connection between the client site and the
orchestrator. Figure 5 displays a high-level diagram of our
system implementation.

5 EVALUATION
5.1 Experimental Setup
Testbed and Methodology. For our main experiments, we
use a real-world deployment consisting of four m5.xlarge
instances, each residing in a distinct AWS region (Tokyo,
Northern California, Ohio, and Ireland). For experiments
that measure the system’s sensitivity to various tuning pa-
rameters, we use a local cluster consisting of four nodes
connected via gigabit ethernet and each node equipped with
24 processors and 64 GB of memory. Each site is emulated
with resources comparable to the m5.xlarge instances we
use in the geo-distributed setting. We used measurements
collected with iperf3 across the same AWS regions as input
to our framework and injected sleep times to emulate the
network throughput. Table 1 shows the throughput numbers
we obtained in Mbps. Emulation of network throughput al-
lows for more accurate comparisons when query latency is
not our evaluation target.

Table 1: Network Bandwidth (in Mbps to N. California)

Northern California Ohio Ireland Tokyo

2160 247 88 109

Datasets and Queries. We use three real-world datasets to
evaluate our system:

• TPC-H : The TPC-H benchmark [31] with 10 GB of data
residing in each location.
• HiBench: A search engine benchmark which relates
page ranks and websites visited by users [2]. We used
6 GB of data in each location.
• IMDb: Relational data for movie titles maintained in
the International Movie Database [1]. This dataset has
about 2 GB of data in each location.
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Our target queries are identified in table 2. The TPC-H queries
match those used to evaluate centralized exact weights [38].
Algorithms for comparison.We compare the following
distributed join strategies in our evaluation:
• Shuffle: The default Spark Join which shuffles the full
tables over the WAN.
• Filtering: A standard distributed join (sampling) tech-
nique which uses bloom filters to avoid shuffling tuples
which will not participate in the join (e.g. Approx-
Join [26], BloomJoin [27], and AggFirstJoin [14]). By
default, we use bloom filters with a false positive rate
of 1%.
• GDEW : Our Geo-Distributed Exact Weights algorithm
• Plexus: Our proposed system. Unless otherwise stated,
Plexus is configured with a weight error bound of
𝜖 = 0.5 and a performance bias of 𝛿 = 1.0. We also
evaluate how various selections of 𝜖 and 𝛿 affect query
latency and sampling accuracy.

Metrics. We use the following metrics to evaluate the base-
lines and our proposed algorithms:
• Query latency: Our primary metric of interest is the
time it takes to execute the query, which is measured
in seconds.
• Network traffic: Reduced network traffic is desirable
to reduce query latency since the network is the main
bottleneck in the wide-area.
• Sampling accuracy: We also evaluate the accuracy of
our generated samples, i.e., the degree to which the key
frequencies in our sample align with the true key fre-
quencies in the full join result. We use a Chi-Squared
test, which evaluates how well the observed frequen-
cies of a given (discrete) variable align with the theoret-
ical frequencies (which would be the true key frequen-
cies in the join result). The test generates an associated
p-value, which traditionally indicates a difference in
distribution when the p-value is less than 0.05.
• Aggregate accuracy: We compute a few aggregate func-
tions to further evaluate the effect of sampling on the
accuracy of common queries involving joins and aggre-
gation. We report the absolute percent error associated
with each aggregate.

By default, we randomly partition the available tables such
that a subset of every table is present at each site with 50%
of the join keys unique to that site and 50% overlapping
with other sites. Section 5.5 evaluates the effects of different
partitioning scenarios.

5.2 Approximate Join Queries
For these experiments, we use one distributed site in each
of the following AWS regions: Northern California, Ohio,
Japan, and Ireland. We also place the orchestrator in the

Northern California region, meaning we will require the
resulting samples to be transferred to that location.

Figures 6a and 6b show the query latency across our four
algorithms with the TPC-H data. For Q-1, we observe that
both geo-distributed algorithms readily outperform the base-
lines. With a sample size of 1 million tuples, filtering out-
performs the full shuffle by 7% while the GDEW algorithm
reduces the query latency by 76%. Plexus makes further im-
provements, reducing latency by approximately 19% over
GDEW. We see a similar pattern for Q-2 in figure 6b, with
improvements over the full shuffle baseline of 7%, 74% and
81% for filtering, GDEW, and Plexus respectively at the 1
million sample size. However, the query latency increases
faster compared to Q-1, since there are more tables in the
join and the result is substantially larger than the size of any
of the tables.
Figure 6c shows the query latency across our four al-

gorithms with Q-3 on the HiBench data. We observe sub-
stantially lower latency when using the geo-distributed ap-
proaches: a 75% and 80% reduction for GDEW and Plexus
respectively for 1 million samples. We also note that the fil-
tering method was more expensive than the full shuffle in
this case. This can happen when every key is present in the
join result. In that case, the filtering introduces additional
overhead without reducing the overall query latency.
Figure 6d shows the query latency across our four algo-

rithms with Q-4 using the IMDb data. This dataset is compar-
atively small with only about 4GB of data (2GB per location),
so we only distribute this across two sites: one in California
and the other in Ohio. We observe that both the full shuf-
fle and filtering approaches outperform GDEW across most
sample sizes. In this case, it is faster to simply shuffle data
over the network rather than attempt weight generation
with no optimizations. Plexus system outperforms the exist-
ing approaches across all sample sizes, due to its additional
optimizations, but the improvement is smaller compared to
the other queries and datasets (about 20%). We conclude that
there is less benefit to running a geo-distributed algorithm
when the data is only a few gigabytes in size.

Network Traffic. Since the network is the main bottleneck
in the geo-distributed setting, we briefly examine the amount
of data sent over the network by eachmethod. Figure 7 shows
the normalized network traffic (compared to the shuffle base-
line) generated by each method. The GDEW and Plexus ap-
proaches generated much less traffic over the WAN, which
accounts for the large performance improvements. Plexus
also generated 13%, 38%, 37% and 30% less traffic compared
to GDEW on TPC-H (Q-1), TPC-H (Q-2), HiBench, and IMDb
respectively. Plexus further reduces traffic by exploiting net-
work heterogeneity and weight approximation.
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Table 2: Target Queries

ID Dataset Full Join Size Description Query

Q-1 TPC-H 4 billion tuples A three table join on the customer, orders,
and lineitem tables.

SELECT * FROM customer, orders, lineitem WHERE c_custkey =
o_custkey AND l_orderkey = o_orderkey;

Q-2 TPC-H 4 trillion tuples A five table join on the nation, supplier,
customer, orders, and lineitem tables.

SELECT * FROM nation, supplier, customer, orders, lineitem
WHERE n_nationkey = s_nationkey AND s_nationkey = c_nationkey
AND c_custkey = o_custkey AND o_orderkey = l_orderkey;

Q-3 HiBench 235 million
tuples

A join on UserVisits and PageRank. SELECT * FROM UserVisits, PageRank WHERE uv_destURL =
pr_pageURL;

Q-4 IMDb 80 million tuples A two-table join on title akas and basics. SELECT * FROM akas, basics WHERE akas_titleId = basics_tconst;
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Figure 6: Query latency as a function of sample size for a variety of approximate joins.
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Figure 7: Network traffic generated by each method.

SamplingAccuracy. Introducing optimizations that approx-
imate weights and leverage network heterogeneity could
potentially change the key distribution in the join sample.
We now evaluate the degree to which our sampled keys are
consistent with the true key distribution in the join result.
Table 3 shows the results of these experiments using a Chi-
Squared test to evaluate deviation. In all cases, we observe
very high p-values associated with each comparison, which
indicates an extremely high degree of consistency between
our sample distribution and the true distribution in the full
join. The GDEW algorithm always produces samples that are
consistent with the true key distribution. This is expected,
since it computes the exact weight for each tuple and does

not rely on any kind of approximation. We observe slightly
smaller p-values for Plexus, which is unsurprising given the
approximation involved. However, the generated samples
are also extremely consistent with the true key distribution
(for our default parameters 𝜖 and 𝛿) and nowhere near the
traditional value of 0.05, which could be used to detect a
statistically significant difference.

Table 3: Join Sampling p-values for a Chi-Squared
Goodness of Fit Test

TPC-H (Q-1) TPC-H (Q-2) HiBench IMDb

GDEW 0.999 0.999 0.999 0.999
Plexus 0.997 0.994 0.986 0.983

5.3 Aggregate Queries
Our join approximation techniques produced accurate sam-
ples, i.e. the distribution of keys in the full join did not differ
significantly from the key distribution in our sample. We
now evaluate the accuracy of aggregate queries that depend
on other columns in the sample. For all aggregates, we run
the query 10 times and report the average error, along with
a 95% confidence interval. We also evaluate the accuracy of
the default sampling mechanism in Spark, which we use as
a baseline.
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In figures 8a and 8b, we evaluate the accuracy of an AVG
query and a query for the 90th percentile respectively. In
both cases, we are searching for titles that are type "movie"
and acquiring information about their run times. We observe
that the GDEW approach and sampling with Spark produce
very similar results. We observe a small increase in average
error with Plexus, but it is not statistically significant (since
the confidence intervals are overlapping).

In figures 8c and 8d, we evaluate the same AVG and 90th
percentile queries using the revenue generated by each web-
page in the HiBench dataset. For both the AVG query and
the 90th percentile query, we observe a small increase in
average error with Plexus compared to the baselines, but
in most cases the difference is not statistically significant.
Overall, Plexus produces aggregates that are very close to
what we can expect with centralized sampling.

5.4 Optimization Effects
Each of our optimization techniques contributed toward a
reduction in latency. We now evaluate the contributions of
each approach to the overall reduction in query latency. The
sample size was 1 million for these experiments.
Figure 9 shows the effects of each technique on query

latency. We consistently observe that sample prefetching has
the strongest effect. Heterogeneity awareness and weight
approximation have smaller effects in the IMDb experiment,
since the data size is relatively small. Note that the benefits
of our optimizations are not necessarily additive; sample
prefetching reduces the benefits of heterogeneity awareness
by reducing the number of samples required. However, the
benefits of weight approximation are largely independent of
the other approaches. Weight approximation also reduces
the amount of computation required at the orchestrator and
other sites by eliminating some keys from consideration.

5.5 Sensitivity Analysis
Weight Approximation.Our first optimization reduced the
amount of network traffic by approximating weights rather
then sending all of them.We introduced aweight error bound
𝜖 which controls the degree to which error can be introduced
in our weight estimation. It represents the average error
allowed for weight approximation, which was set to 0.5 for
the main experiments. To evaluate its more general effects,
we use the IMDb dataset and evaluate how different values
of 𝜖 impact query latency and sample uniformity.
Figure 10a shows the results for the latency experiments.

We observe that query latency decreases for increasing val-
ues of 𝜖 . This is expected, since a high tolerance for error will
allow us to send fewer weights and spend less compute time
gathering samples for keys that were excluded. The dashed
line indicates the time taken for the GDEW algorithm and

all positive values of 𝜖 outperform the baseline latency as
expected. However, too much approximation error will result
in non-uniform samples from the join result.

Figure 10b shows how the generated sample keys diverge
from the true key distributionwith varying values of 𝜖 . A Chi-
Squared test was used to generate the associated p-values.
The distribution of sampled keys diverges as 𝜖 increases,
since we are sampling fewer and fewer weights in each case.
We observe a sharp decrease in quality as 𝜖 gets larger, but 𝜖
values less than 1.0 generate samples statistically consistent
with the true key distribution.

Performance Bias. Our main experiments did not consider
distributions of non-joining columns, only key distributions.
We now examine how the selection of a performance bias 𝛿
affects query latency and aggregate accuracy.
Figure 10c shows the results for varying values of 𝛿 . The

dashed line indicates the query latency for GDEW, where no
network heterogeneity is considered. We observe that the
query latency decreases as our preference for a performance
bias increases. This is expected, since we can have a higher
preference for faster sites when 𝛿 is large. This performance
gain comes at a cost, since the resulting distribution in the
value column can change (the maximum deviation between
CDFs is allowed to be 𝛿). Figure 10d shows the performance
of the IMDb AVG query with varying values of 𝛿 and a sam-
ple size of 1 million. We compute the query 10 times for each
value of 𝛿 and report the mean and a 95% confidence interval.
We observe that the average error increases as 𝛿 increases,
which is expected since we are allowing more data to be
collected from the lowest latency edge. However, we do not
observe a statistically significant difference across 10 runs.
In practice, the selection of 𝛿 depends on the application and
its tolerance for bias in the data distribution.

Data Placement. We now examine how data placement
affects query latency using the IMDb data. We evaluate (1)
the degree of cross-site dependency by varying the amount
of shared join keys and (2) tables that are not partitioned,
but are unique to a given site. Figure 11a shows how dif-
ferent partitioning strategies affect query latency. No key
overlap (0%) indicates that sites have no join keys in com-
mon, whereas 100% indicates that every join key is present
at both sites. As the percentage of shared keys increases,
we see the latency decreases. More shared keys allows for
parallelism in the sampling phase and the ability to leverage
heterogeneity awareness in the case of Plexus. Figure 11b
shows the query latency when tables are unique to each site
rather than partitioned. There is a performance penalty for
both GDEW and Plexus in this case, since stragglers are now
required to send the entire sample for their local table, rather



SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Joel Wolfrath and Abhishek Chandra

0.2 0.4 0.6 0.8 1.0 1.2

Sample Percent

0.0

0.2

0.4

0.6

0.8

P
e
rc

e
n
t 

E
rr

o
r

Spark

GDEW

Plexus

(a) AVG Query, IMDb

0.2 0.4 0.6 0.8 1.0 1.2

Sample Percent

0.0

0.1

0.2

0.3

0.4

0.5

P
e
rc

e
n
t 

E
rr

o
r

Spark

GDEW

Plexus

(b) 90th Percentile, IMDb

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Sample Percent

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
e
rc

e
n
t 

E
rr

o
r

Spark

GDEW

Plexus

(c) AVG Query, HiBench

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Sample Percent

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

P
e
rc

e
n
t 

E
rr

o
r

Spark

GDEW

Plexus

(d) 90th Percentile, HiBench

Figure 8: Aggregate query accuracy over various approximate join algorithms.
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Figure 9: Individual optimization effects on overall
query latency compared to GDEW.

than having samples collected from multiple sites in parallel.

Number of Sites and Network Heterogeneity.We now
explore how the number of sites and the degree of network
heterogeneity impacts query latency. For some applications,
there may be a very large number of sites with relatively
stable WAN connections (e.g. all sites exist in a specific coun-
try). Alternatively, there could be a small number of sites,
but they are distributed across different countries with large
degrees of network heterogeneity. We evaluate how Plexus
performs in each of these situations, using the IMDb data.

Figure 12 shows how each system topology affects query
latency. In Figure 12a, we observe that, all else held constant,
an increase in the number of (homogeneous) sites results
in a reduction in query latency. This is due to the fact that
we are using a fixed sample size; when the number of sites
grows, the samples can be collected in parallel from each
site. We also observe that as the number of sites continues to
increase, the benefits level out. After enough sites are added,
the sample size becomes sufficiently small, such that further
parallelism provides little to no benefit.
Figure 12b examines the behavior of our geo-distributed

algorithms when the variability in network bandwidth in-
creases. In these experiments, we use a mean of 300 Mbps
and slowly increase the standard deviation (SD), so there is

more variability in the network throughput across sites. Our
four sites are assigned a bandwidth of 1 and 2 SDs below the
mean and 1 and 2 SDs above the mean. For example, for a
SD of 10, our four connections would be 280, 290, 310, and
320 Mbps. We first note that the GDEW latency increases as
the network heterogeneity increases. This is due to the fact
that GDEW must collect weights from the slowest connec-
tion to maintain perfect sample uniformity. For Plexus, we
observe that an increase in network heterogeneity does not
correlate with an increase in latency (for 𝛿 = 1.0). In these
cases, Plexus is able to leverage low-latency sites to mitigate
the effects of slower connections. The query time actually
decreases as faster connections become available.

Data Compression. Intermediate results and full tables can
be compressed before they are shuffled over the network.
We perform an experiment enabling compression with full
shuffle, GDEW, and Plexus and compare the resulting laten-
cies. We use the Snappy compression algorithm to compress
all data prior to sending.
Figure 13 shows the results for these experiments on the

TPC-H data. We observe that the performance of all three
techniques are closer when compression is enabled. The
geo-distributed algorithms benefit less from compression,
since they already attempt to minimize the amount of net-
work traffic. The full shuffle approach has the most to gain,
since it is the most network intensive. We conclude that com-
pression benefits all techniques, but Plexus still provides a
performance improvement in this setting of around 61% over
the full shuffle approach at the 1 million sample size. Com-
pression benefits the full shuffle technique the most, with
a reduction in latency around 50%, while the reduction in
latency for GDEW and Plexus was 10% and 4% respectively.
When both of our proposed methods enable compression, we
observe that Plexus still outperforms GDEW by 5% for Q-1
and 13% for Q-2 at the 1 million sample size. Larger sample
sizes will result in additional performance improvements for
Plexus over GDEW, since Plexus can perform prefetching
and leverage network heterogeneity. We also note that for
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Figure 10: Evaluation of the tuning parameters in Plexus
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Figure 11: Effect of Data Placement
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Figure 12: Effect of System Heterogeneity
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Figure 13: Latency comparison with compression

both queries, our Plexus baseline without compression is
able to outperform all other methods, even when they have
compression enabled.

5.6 Summary of Results
Our geo-distributed exact weights algorithm showed con-
sistent improvement over the baselines for sufficiently large
datasets. Even with a conservative choice for 𝜖 , Plexus re-
sulted in a notable further reduction in query latency. Plexus
and GDEW generated substantially less WAN traffic, while
Plexus also exploited network heterogeneity to gain addi-
tional latency benefits. These results held across a variety
of queries, data distributions, and network configurations.
We found that sample prefetching offered the largest benefit
in terms of latency reduction, followed by weight approxi-
mation and heterogeneity awareness. The degree to which
non-uniformity can be introduced also affects the latency. If
an application can tolerate larger values for 𝜖 and 𝛿 , addi-
tional performance improvements can be obtained.
Our proposed algorithms are more performant in many

geo-distributed deployments, but in certain settings, shuf-
fling or filtering the data over the network may be preferable.
The baselines can be useful when the data size is small or
when the network connections are very fast. In these cases,
the overhead of generating weights and collecting samples
may provide little or no benefit. However, we found that
in a real-world deployment with datasets more than a few
gigabytes in size, the geo-distributed algorithms offer a sub-
stantial reduction in query latency.

5.7 Discussion
Optimizations for selection predicates were not evaluated
directly, but can easily be implemented as part of Plexus.
Distributed query plans typically need to consider when to
apply a given predicate. In the geo-distributed setting, the
WAN is a substantial bottleneck, so we recommend pushing
these filters to each site, which would reduce network traffic.
Additional optimizations could be built into Plexus that

make improvements for recurring queries or incremental
approximation. If a given query may be executed multiple
times, there are opportunities to reduce the cost on subse-
quent executions. If the data is static, it suffices to simply
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cache the weights from the first execution and perform ad-
ditional sample collection phases. If the query recurs over
dynamically changing data, the weights for each tuple may
need to be updated. In this case, the weight generation phase
will only need to generate new weights for the tuples that
changed, which reduces network traffic and therefore query
latency. Alternatively, join synopses could be maintained
for each table that would make updates more efficient [39].
Note that the full shuffle and filtering methods would need
to send any newly obtained data in the recurring query case.
In many real-world scenarios, data encryption would be

required when transferring data between locations. While
our implementation used FTP for data transfer, encrypted
protocols and/or tunneling may be necessary in practice.
This will only increase the importance of efficient use of
the network, since encryption keys must be established and
encrypting all traffic will drive an increase in I/O latency.

6 RELATEDWORK
Geo-Distributed Data Analytics. Performing various an-
alytical tasks in the wide-area is an important related area
of research, due to the network scarcity and heterogeneity
[20]. General analytics systems like Iridium and WANalytics
propose optimizing the data placement and queries to mini-
mize network usage or query latency [24, 33]. MapReduce
jobs have also been optimized for the geo-distributed setting
by considering network and compute heterogeneity across
nodes [9]. These geo-distributed techniques offer important
performance improvements, but still generate large shuffles
(linear in the table sizes) when computing joins, similar to
Apache Spark [35] in our evaluation. Other systems such as
PGPregel focus on optimizing analytics over geo-distributed
graphs, which is challenging due to the high cost associated
with data transfers [40]. Streaming analytics in the wide-area
has also received substantial attention [8, 13, 34, 36]. Systems
such as AWStream make dynamic adjustments to account
for the variation in WAN performance when streaming data.
Databases such as CockroachDB have been architected to ad-
dress the challenges of storing and querying data distributed
across the globe [30]. Other relevant lines of research include
techniques for scheduling jobs to take advantage of data local-
ity [12] and optimizing geo-distributed data transfers based
on an awareness of live network conditions [19]. We devise
an algorithm and optimizations to significantly advance the
state-of-the-art for join approximation in geo-distributed
environments. Furthermore, we leverage data-awareness to
constrain optimizations that may affect query accuracy.

Join Approximation. Plexus generalizes the exact weights
algorithm suggested by Zhao et al. [38], but other variants
of the algorithm exist which depend on rejection sampling or

online aggregation. While these techniques could also be im-
plemented in the wide-area, making sequential passes over
partitioned tables is more expensive in the geo-distributed
setting. Both techniques would require several additional
passes over the tables to obtain the desired sample size. How-
ever, computing weights for these variants is cheaper, so
a future work could consider optimizing these sequential
passes to see they are viable in the wide-area.

Distributed join research (within a single datacenter) is an-
other important research direction. AdaptDB [21], Track join
[23], and Flow-join [28] are all systems that attempt to reduce
join query latency over distributed data, using techniques
such as data placement optimization, filtering, network traf-
fic scheduling, and data partitioning. Bloom filter techniques
exist for filtering out tuples that will not participate in the
join [27], which we used as a baseline in our evaluation. Ap-
proxJoin also uses bloom filters, but is limited to evaluating
aggregation functions, not generating tuples from the join
result [26]. A common shortcoming of these approaches is
that they still must shuffle all tuples participating in the join,
since they are designed to produce the full join. More care-
ful weighting of each tuple is required to obtain uniform
samples from the join result. AggFirstJoin examines how
stream operators can be re-ordered to substantially reduce
wide-area network traffic over join queries that compute ag-
gregates [14]. This technique is also restricted to queries that
exclusively evaluate an aggregate function. One preliminary
work explores factors that influence join sampling latency
in the wide-area [15]. It attempts to use the exact weights
algorithm; however, it implicitly assumes each table joins on
the same key, making it restrictive in practice. Conditional
distributions are required to fetch weights in parallel from
each site and maintain uniformity [29]. We fully generalize
the exact weights algorithm using dynamic programming to
support joining on arbitrary columns and introduce three
additional optimizations to reduce query latency.

7 CONCLUSION
We presented Plexus, our geo-distributed join approximation
system.We generalized the existing Exact Weights algorithm
for join sampling and provided three optimizations for re-
ducing query latency: weight approximation, heterogeneity
awareness, and sample prefetching. We also explored how
minimizing query latency affects other query aspects, such
as sample uniformity and bias in non-joining columns. Our
analysis shows that our approach can substantially reduce
the time required to approximate joins, by up to 80%.
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