
SneakPeek: Data-Aware Model Selection and Scheduling for
Inference Serving on the Edge

Joel Wolfrath
University of Minnesota
Minneapolis, MN, USA
wolfr046@umn.edu

Daniel Frink
University of Minnesota
Minneapolis, MN, USA
frink021@umn.edu

Abhishek Chandra
University of Minnesota
Minneapolis, MN, USA
chandra@umn.edu

ABSTRACT
Modern applications increasingly rely on inference serving systems
to provide low-latency insights with a diverse set of machine learn-
ing models. Existing systems often utilize resource elasticity to scale
with demand. However, many applications cannot rely on hardware
scaling when deployed at the edge or other resource-constrained
environments. In this work, we propose a model selection and
scheduling algorithm that implements accuracy scaling to increase
efficiency for these more constrained deployments. We show that
existing schedulers that make decisions using profiled model ac-
curacy are biased toward the label distribution present in the test
dataset. To address this problem, we propose using ML models–
which we call SneakPeek models– to dynamically adjust estimates
of model accuracy, based on the underlying data. Furthermore, we
greedily incorporate inference batching into scheduling decisions
to improve throughput and avoid the overhead of swapping models
in and out of GPU memory. Our approach employs a new notion
of request priority, which navigates the trade-off between attain-
ing high accuracy and satisfying deadlines. Using data and models
from three real-world applications, we show that our proposed
approaches result in higher-utility schedules and higher accuracy
inferences in these hardware-constrained environments.

CCS CONCEPTS
• Mathematics of computing→ Bayesian computation; • Infor-
mation systems→ Data analytics; • Computing methodolo-
gies→ Supervised learning.

KEYWORDS
Inference Serving, Edge Computing, Model Selection, Scheduling

ACM Reference Format:
Joel Wolfrath, Daniel Frink, and Abhishek Chandra. 2025. SneakPeek: Data-
Aware Model Selection and Scheduling for Inference Serving on the Edge.
In ACM Symposium on Cloud Computing (SoCC ’25), November 19–21, 2025,
Online, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3772052.3772217

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’25, November 19–21, 2025, Online, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2276-9/25/11
https://doi.org/10.1145/3772052.3772217

1 INTRODUCTION
The widespread adoption of machine learning across diverse ap-
plication domains has created a pressing need for efficient and
scalable inference serving systems. Inference serving systems ex-
pose APIs that allow client applications—such as mobile apps, web
services, or enterprise platforms—to submit inference requests to
pre-trained models, often at massive scale, with some deployments
handling billions of requests daily [26]. These systems support
critical applications such as healthcare monitoring [27], language
translation [26], recommendation systems [32], and mobile ser-
vices [15], where timely and accurate responses are essential. To
alleviate the burden on developers and end-users of manually nav-
igating complex accuracy-latency trade-offs, model-less inference
serving has emerged as a paradigm in which the system itself dy-
namically selects the most suitable model for each request, based
on contextual factors such as latency constraints, accuracy require-
ments, and system load. This model selection paradigm is common
in modern inference serving frameworks [1, 40, 46, 54], which of-
ten host multiple models with varying accuracy-latency profiles.
A key challenge in these systems is selecting the most appropriate
model variant to serve each request—a decision that must be made
in conjunction with scheduling policies to ensure efficient resource
utilization and responsiveness.

While existing inference serving systems are often deployed in
the public cloud, inference serving is also critical for applications
that run in more constrained environments, such as edge clusters or
private clouds. Local deployments, such as those found in healthcare
facilities or smart cities, are often necessary to avoid the increased
cost, latency, and privacy concerns associated with streaming data
over wide-area networks to a cloud setting. However, there are
several challenges associated with efficient inference serving in
these local deployments. First, such inference serving systems must
service requests formultiple applications, each with their own set of
data streams which may require real-time processing. These appli-
cations also have unique service level objectives (SLOs), including
low-latency deadlines which are critical to satisfy, especially for
real-time applications [54, 56]. Next, local deployments often have
resource constraints (e.g. limited to a single GPU) and lack the
resource elasticity of the cloud, which prevents systems from us-
ing autoscaling to meet demand. Finally, deep neural networks
(DNNs) are a common model choice due to their high accuracy,
but they can be computationally intensive. An inference serving
system may offer a collection of multiple DNN models for each
application to choose from, with each model presenting a different
latency-accuracy tradeoff (e.g., some models may be lightweight
but less accurate, while others may have higher accuracy but take
longer to execute) [54]. Thus, selecting and scheduling the right

https://orcid.org/0000-0002-7251-3740
https://orcid.org/0009-0006-8197-0536
https://orcid.org/0000-0001-9914-2604
https://doi.org/10.1145/3772052.3772217
https://doi.org/10.1145/3772052.3772217
https://doi.org/10.1145/3772052.3772217

SoCC ’25, November 19–21, 2025, Online, USA Joel Wolfrath, Daniel Frink, and Abhishek Chandra

model for each request in a multi-application, constrained resource
environment is challenging.

Existing work focuses mainly on inference serving in public
clouds or other settings that support hardware scaling [4, 16, 23,
40, 45, 46, 55]. A few works have explored accuracy scaling as a
strategy for inference serving systems operating under fixed re-
source constraints [1, 2, 41, 54]. When resource elasticity is not
available, systems must find alternative ways to manage fluctuat-
ing query loads. Accuracy scaling addresses this by profiling the
accuracy of available models and dynamically adjusting the trade-
off between accuracy and throughput. This allows the system to
remain responsive by selectively deploying faster, less accurate
models during periods of high demand. This approach works in
practice, but existing designs are suboptimal for two reasons: (1)
they are data-oblivious: profiled model accuracy is biased toward
the test dataset and may not reflect the distribution of the out-of-
sample data, thus reducing the quality of the associated scheduling
decisions; and (2) they perform model selection for each inference
request in isolation. As a result, inference batching—a key optimiza-
tion for improving throughput—is only applied opportunistically
when requests happen to align in time and model usage. Without
explicit coordination in the scheduling process to group compatible
requests, batching opportunities are missed, leading to increased
model loading overhead and reduced scheduling efficiency.

Existing systems that rely on profiled model accuracy make sub-
optimal model selection decisions when properties of the data are
ignored. We propose leveraging data-awareness to understand how
eachmodel will perform over the actual data being processed in real-
time. In this framework, we treat class frequencies as parameters,
which are dynamically estimated based on the data. These parame-
ters are then used to inform model selection decisions by providing
sharper estimates of model accuracy. We propose a joint model se-
lection and scheduling algorithm for hardware-constrained, multi-
application inference serving. Our algorithm uses a new notion of
request priority based on model accuracy and request deadlines,
which attempts to maximize inference accuracy while minimizing
deadline violations. Furthermore, our approach greedily incorpo-
rates inference batching (or request grouping) into the resulting
schedules. This grouping provides the scheduler with a more global
view of request dependencies, while reducing overheads and model
swap latency in and out of GPU memory.

Contributions.We make the following research contributions:

• We formulate an optimization framework for joint model selec-
tion and request scheduling which implements accuracy scaling
for hardware-constrained environments.
• We present our data-awareness mechanism, SneakPeek, which
sharpens accuracy estimates in real-time based on the underlying
data and is easily incorporated into existing schedulers.
• We propose heuristics for efficiently performing model selection
and scheduling in practice. These heuristics employ a new notion
of priority as well as inference batching (grouping).
• We show that our proposed data-awareness techniques can also
be incorporated into other state-of-the-art schedulers.
• We thoroughly evaluate our proposed approach using three, real-
world applications and a variety of model types. Our methods

achieve up to a 2x increase in utility, a metric that combines
model accuracy with a penalty for any missed deadlines.

2 PRELIMINARIES
2.1 Motivating Applications
Edge analytics is critical for smart city deployments [3], which
process data from a wide array of sensors and cameras to optimize
traffic flow, manage waste, enhance public safety, and support urban
planning. In the realm of surveillance, video analytics improves
security by automatically identifying unusual behaviors or specific
actions. This capability enables systems to alert security teams
about potential threats, ensuring rapid, proactive responses [43].
Furthermore, modern surveillance extends beyond video alone, and
requires capturing data and making real-time decisions in various
sectors such as retail, transportation, and service industries.

Hospitals, assisted living facilities, and in-home care systems
also collect and process real-time data from a variety of sources
(such as wearable sensors, monitors, video cameras, etc.), which
can be used to improve patient care and assist medical staff [12, 25].
Many of these tasks require low-latency inference, since the results
directly affect patient well-being. For example, care facilities may
monitor patient movement or gait, which could alert medical staff
if an elderly patient is wavering or falling over. There are several
other applications in this domain which leverage inference serving,
including arrhythmia detection [6], seizure forecasting [44, 49], and
respiratory compromise [8, 19]. Since offloading data and tasks to
a remote cloud is not an option due to latency, cost, and privacy
concerns, many of these care facilities are equipped with edge
clusters that have limited resource capacity and elasticity. Real-
time inferences are generated by streaming video frames or data
from wearable sensors to the edge cluster and issuing recurring
queries to monitor for critical events. We use healthcare informatics
as a running example in this work.

2.2 System Model
In our framework, the system is tasked with selecting a model
variant for each request and scheduling it for execution. Users
wishing to access the inference-serving APIs first register their
application with the system. This registration process includes pro-
viding metadata for the application, including which data streams
it should process and any service level objectives (SLOs) which
specify deadlines for each query type. The application owner also
uploads pre-trained ML models to be used for inference along with
a testing or validation dataset for the application. The system then
profiles the specified models on the target hardware to obtain esti-
mates of inference latency, model accuracy, GPU memory usage,
and latency for loading the model into GPU memory.

3 PROBLEM STATEMENT AND SYSTEM
ARCHITECTURE

3.1 Problem Statement
Our system is taskedwith providing inference serving in a hardware-
constrained, multi-application setting. In this paper, we focus on
execution on a single GPU worker, but our techniques can be ex-
tended to multi-worker settings, as discussed in section 8. Each

SneakPeek: Data-Aware Model Selection and Scheduling for Inference Serving on the Edge SoCC ’25, November 19–21, 2025, Online, USA

Figure 1: Our system model for inference serving includes a
data-aware component – SneakPeek – which provides input
to the model selection and scheduling algorithms.

application registers one or more classification models1, which the
system can use to satisfy inference requests. For a given set of re-
quests, our task is to assign a model to each request and schedule
the associated inference tasks for execution. More formally, let R
be our set of requests, where each request 𝑟𝑖 ∈ R has an associated
deadline of 𝑑𝑖 . Each request also belongs to a target application,
which we denote 𝑎𝑖 . We defineM𝑎 to be the set of registered model
variants for application 𝑎.

Our objective is to find a schedule S that maximizes the average
utility for all requests. The utility of a request (defined below)
represents the expected inference accuracy, which degrades if a
deadline is missed. The schedule can be represented by a set of
nonnegative integers, denoted 𝑠𝑖 𝑗 , mapping requests to models.
Here, a nonzero value of 𝑠𝑖 𝑗 indicates that request 𝑟𝑖 is assigned
to model 𝑚 𝑗 ∈ M𝑎𝑖 (for 𝑖 ∈ 1..|R | and 𝑗 ∈ 1..|M𝑎𝑖 |). If 𝑠𝑖 𝑗 is
positive, the integer value represents the execution order, relative
to the other requests (with lower values of 𝑠𝑖 𝑗 being executed first,
the first request being assigned an 𝑠𝑖 𝑗 value of 1). We also define
the execution start time 𝑡𝑖 for a given request 𝑟𝑖 (omitting the
dependence on S for brevity):

𝑡𝑖 =

|M𝑎𝑖
|∑︁

𝑗=1

| R |∑︁
ℎ=1

|M𝑎ℎ
|∑︁

𝑙=1
1𝑠ℎ𝑙<𝑠𝑖 𝑗 ℓ (𝑚𝑙) (1)

where ℓ (𝑚𝑙) is the (profiled) inference latency for model𝑚𝑙 , includ-
ing any context switch time required to swap the model variant into
GPU memory. This works by finding all requests that are ordered
ahead of request 𝑟𝑖 and summing their expected model latencies.

We now define the utility for a given request 𝑟𝑖 :

𝑢𝑎𝑖 (𝑚 𝑗 , 𝑑𝑖 , 𝑡𝑖) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑚 𝑗) [1 − 𝛾𝑎𝑖 (𝑑𝑖 , 𝑡𝑖 + ℓ (𝑚 𝑗))] (2)

where 𝛾𝑎𝑖 (𝑑𝑖 , 𝑒𝑖) ≥ 0 is a monotonically increasing penalty func-
tion, which generates positive values when a deadline is expected
to miss (i.e. when the deadline 𝑑𝑖 is less than the expected request
completion time 𝑒𝑖). Some examples include a sigmoid function,
linear penalty, or step function, e.g. 𝛾𝑎𝑖 (𝑑𝑖 , 𝑒𝑖) = 1𝑑𝑖<𝑒𝑖 . If all the
deadlines are met, the utility is just the profiled accuracy2 of the

1All of our approaches can be adapted to support other modeling types (e.g. regression)
but we focus on classification to simplify the presentation.
2Note: Some implementations may prefer to normalize the accuracy values across
applications, to ensure fairness.

selected model. These utility (and penalty) functions are defined
at the application level. Even applications which require high ac-
curacy (e.g. in a healthcare setting), can define a utility function
in a way which satisfies their requirements. For example, if we
define our penalty function to be a constant, the optimization will
strictly maximize accuracy. We now define our optimization prob-
lem for scheduling and model selection, which seeks to maximize
the average utility across all requests:

max
S

1
|R |

| R |∑︁
𝑖=1

|M𝑎𝑖
|∑︁

𝑗=1
1𝑠𝑖 𝑗>0 𝑢𝑎𝑖 (𝑚 𝑗 , 𝑑𝑖 , 𝑡𝑖) (3)

s.t. 𝑠𝑖 𝑗 ∈ Z+0 (4)
|M𝑎𝑖

|∑︁
𝑗=1

1𝑠𝑖 𝑗>0 = 1, ∀𝑖 (5)

𝑠ℎ𝑙 ≠ 𝑠𝑖 𝑗 , ∀ℎ, 𝑙 s.t. ℎ ≠ 𝑖, 𝑠ℎ𝑙 > 0, 𝑠𝑖 𝑗 > 0 (6)

Constraint (4) forces the 𝑠𝑖 𝑗 terms to be non-negative integers. A
non-zero value indicates request 𝑟𝑖 is assigned model𝑚 𝑗 ∈ M𝑎𝑖 .
The integer value of 𝑠𝑖 𝑗 indicates its order in the execution sequence.
Constraint (5) ensures that each request gets assigned exactly one
model. Constraint (6) ensures that requests have distinct integers
for ordering.

We can show that specific instantiations of the optimization
problem in equation 3 are NP hard, e.g. by excluding model se-
lection from the optimization. More specifically; let |M𝑎𝑖 | = 1 for
all applications and define 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑚 𝑗) = 1 for all𝑚 𝑗 ∈

⋃
𝑎
M𝑎 .

In addition, define the penalty function to be a step function, i.e.
𝛾𝑎𝑖 (𝑑𝑖 , 𝑒𝑖) = 1𝑑𝑖<𝑒𝑖 . Then we are left with an optimization problem
that minimizes a unit penalty for jobs with sequence independent
startup times over an arbitrary number of application families. This
is a known NP-hard problem [7, 9], even without considering more
complicated choices forM. Evaluating all candidate solutions is
extremely expensive, with the number of solutions for 𝑛 requests
(for a single application) totaling 𝑛!|M𝑎𝑖 |𝑛 . Computing an exact so-
lution may be feasible when the number of requests and/or models
is very small. However, in many practical settings, we require an
approximate solution that can be found quickly.

3.2 System Architecture
In our proposed system (figure 1) application owners register their
applications with the system and upload model variants to service
their requests. We assume model profiles are specified, which in-
clude accuracy measurements for every possible target label, along
with profiled latency measurements for the GPU.

After an application is registered, real-time data is then streamed
to our SneakPeek module (section 4) which is a distinct process for
asynchronous data staging, preprocessing, and sharpening accu-
racy estimates via data-awareness. Inbound requests are enqueued
during a scheduling window, then scheduled for inference. The
scheduler obtains metadata from the SneakPeek module, then as-
signs models and produces a schedule for the provided requests
(section 5). These requests are then dispatched to the worker queue.
The worker loads the data and model variant required to service
the request and generates the inference result.

SoCC ’25, November 19–21, 2025, Online, USA Joel Wolfrath, Daniel Frink, and Abhishek Chandra

4 SNEAKPEEK: INCORPORATING
DATA-AWARENESS

4.1 Dependence on Model Accuracy
Hardware-constrained scheduling algorithms in the literature often
utilize accuracy scaling, which requires high-quality estimates of
model accuracy for correctness. If the accuracy estimates for each
model variant are poor, the resulting schedules will be suboptimal.
Existing schedulers are often data-oblivious and rely on a single, pro-
filed estimate of model accuracy for making decisions. Relying on
a single summary statistic to make decisions can cause schedulers
(including exact solvers) to produce suboptimal solutions.

Model accuracy is not a static quantity; it often varies across
target classes in a dataset [54]. For example, consider the task of per-
forming human action recognition over video frames. Some actions,
such as walking and sitting, are easier for a model to distinguish
than others, such as loitering or talking on the phone. This makes
the profiled model accuracy very sensitive to the frequency of each
class in the test data set. Therefore, it is an (often unstated) require-
ment that the profiled test set match the distribution of classes that
will be observed out-of-sample. However, even if a practitioner can
match the distribution exactly, using a static accuracy value ignores
the heterogeneity present in the data, which can be used to obtain
better accuracy values for each inference request.

We can also observe this phenomenon by examining model
accuracy analytically. In the context of multi-class classification
with a set of class labels 𝑐 , the profiled accuracy of a model𝑚 is
computed as [21]:

Accuracy(𝑚) = tr(𝑍)∑ |c |
𝑖=1

∑ |c |
𝑗=1 𝑧𝑖 𝑗

(7)

where 𝑍 = [𝑧𝑖 𝑗]1≤𝑖, 𝑗≤ |𝑐 | is the confusion matrix generated by eval-
uating the model on a test data set. We can rewrite this expression
as:

Accuracy(𝑚) =
|c |∑︁
𝑖=1

©­«
∑ |c |

𝑗=1 𝑧𝑖 𝑗∑ |c |
𝑗=1

∑ |c |
𝑘=1 𝑧 𝑗𝑘

ª®¬ 𝑧𝑖𝑖∑ |c |
𝑗=1 𝑧𝑖 𝑗

(8)

=

|c |∑︁
𝑖=1

𝜃𝑖
𝑧𝑖𝑖∑ |c |
𝑗=1 𝑧𝑖 𝑗

(9)

where 𝜃𝑖 is the frequency of class 𝑐𝑖 in the test set and the remaining
term is the recall for 𝑐𝑖 . While the recall for a given class depends on
the trained model, the frequency of each class (𝜃) depends exclusively
on the test data set. This implies that the profiled accuracy can be a
poor estimator of out-of-sample accuracy if the class frequencies
do not match the frequency in the test data set.

To address this issue, we propose dynamically computing model
accuracy by treating 𝜃 as a parameter in equation 9 and estimating
it using the data rather than implicitly assigning it the frequencies
in the test set. While we use the accuracy metric to illustrate the
approach, the same principle applies to other scoring rules. For
example, the weighted 𝐹1 score uses 𝜽 directly when averaging.
The quadratic score can also be rewritten in terms of 𝜽 .

Figure 2: Data-awareness workflow for a fall detection appli-
cation. A SneakPeek model updates expected model accura-
cies in real-time to improve scheduling decisions.

4.2 SneakPeek Estimation Scheme
We require a mechanism for estimating the accuracy of each model,
given the data it will operate on. Our task is to dynamically es-
timate 𝜽 = ⟨𝜃1, ..., 𝜃 |𝑐 | ⟩ based on the data, which will produce a
better estimate of the accuracy of a given model.

Definition 4.1.1. A SneakPeek model is a model that uses real-time
data to estimate 𝜽 .

SneakPeek models use the underlying data to give us better esti-
mates of model accuracy, which can be used to improve scheduling
decisions. By using SneakPeek models to estimate 𝜽 directly, we
can perform a single inference and use the result to update model
accuracies for every model inM𝑎𝑖 . At first glance, it appears we can
simply assign 𝜽 the resulting class probabilities from a SneakPeek
model. However, most machine learning models do not generate
true probabilities, in the sense that they do not represent long-run
frequencies. They generate scores, then a decision rule is applied to
generate a prediction. To overcome this limitation, we consider a
Bayesian approach for obtaining a (posterior) estimate of 𝜽 using
the Dirichlet-Multinomial model.

Definition 4.1.2. SneakPeek probabilities are the posterior esti-
mates 𝜽 | 𝒚 computed after using a SneakPeek model to collect the
evidence 𝒚.

We now define our mechanism for obtaining SneakPeek proba-
bilities, given a model. To obtain our posterior estimates of 𝜽 we
need to define our prior distribution and a mechanism for collecting
evidence. To illustrate this process, we consider a fall detection ap-
plication in a healthcare setting, where the candidate models must
infer whether a subject has fallen over and requires immediate
attention. We assume this is a binary classification task (i.e. |𝑐 | = 2).
Figure 2 shows the inference process at a high-level.

Prior Distribution. Our prior distribution has the form:

𝜽 ∼ Dirichlet(𝛼1, ..., 𝛼 |𝑐 |) (10)

which has hyperparameters 𝛼𝑖 that provide a weight for each class.
Assigning 𝛼𝑖 to a constant for all 𝑖 is a reasonable default and works
well in practice (section 6.3.3). The application owner can optionally
specify alternative prior distributions, based on expert experience
(and not taken implicitly from a test set). For fall detection, a true

SneakPeek: Data-Aware Model Selection and Scheduling for Inference Serving on the Edge SoCC ’25, November 19–21, 2025, Online, USA

positive (a subject has fallen) is a relatively rare event, so we may
prefer to encode that in our prior distribution.

Evidence.We require a low-latency mechanism for generating a
multinomial observation for the dirichlet/multinomial model. For
the fall detection application, we want to use the data (e.g. maybe
a short video clip) to determine which classes are likely present
in the data. We use 𝑘-nearest neighbors with the original training
data to provide this evidence. For a given data point, we find the
𝑘 nearest points in the training data and allow each neighboring
point to count in our multinomial realization. For example, if we
have 𝑘 = 5 and two neighbors have the "no fall" label and three have
the "fall" label, then our multinomial evidence would be 𝒚 = ⟨2, 3⟩.
Note that 𝑘-nearest-neighbors may not be the fastest algorithm, so
approximate nearest neighbors (e.g. locality sensitive hashing) may
be required in practice. An alternative option would be to use a
single model and decision rule to produce a unit vector with a single
non-zero entry, e.g. ⟨0, 1⟩ if we believe a fall occurred. However,
this is a low-information update and has the potential to introduce
additional error if the predicted class is wrong.

Posterior Estimates. In our model, the Dirichlet distribution is a
conjugate prior, so the posterior distribution of 𝜽 is:

𝜽 | 𝒚 ∼ Dirichlet(𝛼1 + 𝑦1, ..., 𝛼 |𝑐 | + 𝑦 |𝑐 |) (11)

Therefore, the two hyperparameters in our system are the choice
of prior distribution and the number of neighboring points (𝑘) to
include in the evidence. The value of𝑘 can be optimized via standard
supervised learning procedures.

An important insight is that existing schedulers can directly
incorporate SneakPeek modeling to improve accuracy estimation.
The only change required is to include the per-class recall in model
profiles. Furthermore, low-latency SneakPeek models can perform
inference asynchronously and off the critical path, avoiding in-
creased scheduling latency when estimating model accuracy.

5 MODEL SELECTION AND SCHEDULING
5.1 Proposed Approach
We require an efficient mechanism for solving the scheduling prob-
lem (eq. 3) since checking all candidate solutions is often infeasible.
we propose splitting this problem into two sub-problems: (1) re-
quest ordering and (2) model selection. We first apply the ordering
to our available requests, then select a locally-optimal model to
satisfy each inference request in the order specified.

5.1.1 Priority-based Request Ordering. We require a strategy for
ordering the requests prior to model selection. Common examples
from the literature include first come first served (FCFS) [42, 54]
and earliest deadline first (EDF) [40]. We propose a priority-based
ordering, which attempts to dynamically navigate the trade-off
between satisfying deadlines and maximizing inference accuracy.
Our goal is to identify a priority function that gives higher values
to requests that either (1) have tight deadlines or (2) have a high
degree of variability across their choice of models (and thus, have
a higher flexibility in model selection). We define the priority for a

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Deadline

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
e
q
u
e
s
t

P
ri

o
ri

ty

Var=0.25

Var=0.50

Var=0.75

(a) Priority vs. deadline

0.0 0.2 0.4 0.6 0.8 1.0

Variance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e
q
u
e
s
t

P
ri

o
ri

ty

d=1

d=2

d=4

(b) Priority vs. variance

Figure 3: Request priority as a function of deadline and vari-
ance in model accuracy.

given request 𝑟𝑖 to be:

Priority(𝑟𝑖) =
(
1 + Var[𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (M𝑎𝑖)]

)
𝑒−𝑑𝑖 (12)

where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (M𝑎𝑖) = {𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑚 𝑗) | 𝑚 𝑗 ∈ M𝑎𝑖 } is the set
of model accuracies for 𝑟𝑖 ’s application models. Requests that have
deadlines in the near future or have a high degree of variability3 in
model accuracy are prioritized. The intuition is that requests with
upcoming deadlines should be prioritized with increasing urgency
as we get closer to their deadlines. At the same time, whenever
possible (given the deadlines), our scheduler should focus resources
on higher model variance requests. If there is a low variance in
model accuracy, then model selection is unlikely to have much
effect on the average utility (which we are trying to maximize).
Figure 3 illustrates how different deadlines and accuracy variances
affect model priority. When requests are very close to their deadline,
the priority increases rapidly. When deadlines are far in the future,
the variance in model accuracy has a larger effect on priority.

5.1.2 Locally-Optimal Model Selection and Placement. Once re-
quests have been ordered, then for each request 𝑟𝑖 , we can obtain
a locally-optimal solution by selecting the model with the highest
utility, that is:

argmax
𝑚 𝑗 ∈M𝑎𝑖

𝑢𝑎𝑖 (𝑚 𝑗 , 𝑑𝑖 , 𝑡𝑖) (13)

where 𝑡𝑖 is the current time (or the current time plus the expected
wait time prior to execution). Finding the best model is linear in
the number of available model variants.

5.2 Grouped Scheduling
Dividing the scheduling problem into request ordering and model
selection provides a scalable way to schedule requests in prac-
tice. However, using locally-optimal decisions per request prevents
schedulers from getting a global view of request dependencies and
exploiting model reuse when making decisions. To get an intuition
from optimal solutions, we brute forced solutions to the original
scheduling problem in small dimensions (eq. 3). We observed that
the optimal solutions tend to group requests by application and typi-
cally assign the same model to all requests in the group. Furthermore,
this grouping pattern was present in 60-70% of scheduling windows
when computing exact solutions (the remaining cases are discussed

3We use the population variance to compute a priority, so |M𝑎𝑖
| = 1 =⇒

Var[𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (M𝑎𝑖
)] = 0.

SoCC ’25, November 19–21, 2025, Online, USA Joel Wolfrath, Daniel Frink, and Abhishek Chandra

in section 5.3.2). These results suggest that inference batching (or
request grouping) is a good strategy, which existing works can only
exploit opportunistically if requests happen to be assigned the same
model [1, 11, 45]. Using this intuition, we propose grouping requests
by application and applying policies and selection strategies at the
group level, rather than the request level. This also allows us to
exploit model locality and avoid the additional latency associated
with swapping models in and out of GPU memory.

We begin by defining the set of groups G = {𝑔𝑖 | 𝑔𝑖 ⊆ R} to be
a partition of R. Each group contains the subset of requests in R
that belong to the same application (and therefore have the same
candidate model variants). More precisely, 𝑟1, 𝑟2 ∈ 𝑔𝑖 ⇐⇒ M𝑎1 =

M𝑎2 . Next, we define the priority of a group 𝑔 ∈ G to be:

Priority(𝑔) = 1
|𝑔|

∑︁
𝑟 ∈𝑔

Priority(𝑟) (14)

that is, the group priority is simply the mean of the priority of
each request in the group. This approach will attempt to greedily
exploit inference batching, but it can also reduce the dimension of
the original optimization problem. The full group-level scheduling
algorithm is outlined in Algorithm 1. We first check to see if the
number of groups is small enough to obtain an exact solution4. If
not, we fall back to a locally-optimal solution (applied at the group
level), which assigns priorities to each group and schedules all
the requests within a group together. All of our proposed request-
based approaches can be solved exactly for a very small number
of requests; however, the grouping strategy allows many more
scenarios where a solution can be brute forced, since it is a function
of the number of applications |𝐴| rather than the number of requests
|R |, and |𝐴| << |R | in practice.

Algorithm 1: Group-Level Scheduling
Input: R, Model setsM𝑎𝑖 , Brute-Force Threshold 𝜏

S ← Schedule initialized to all zeros
𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 ← HashMap < app : request list >

if num_keys(𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠) ≤ 𝜏 then
return brute_force_solution(𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠)

end

𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑔𝑟𝑜𝑢𝑝𝑠 ← sorted groups by avg priority (eq. 14)

for 𝑔 in 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑔𝑟𝑜𝑢𝑝𝑠 do
𝑚 𝑗 = solution to eq. 13 using avg group utility
𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 ← requests in 𝑔 sorted by priority
𝑜𝑟𝑑𝑒𝑟 ← 1
for 𝑟𝑖 in 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 do

𝑠𝑖 𝑗 = 𝑜𝑟𝑑𝑒𝑟

𝑜𝑟𝑑𝑒𝑟 = 𝑜𝑟𝑑𝑒𝑟 + 1
end

end
return S

4In practice, we found that 5 or fewer applications could be solved exactly in under
10ms (section 6.4.2).

5.3 Data-Aware Enhancements
In section 4, we proposed SneakPeek models within a Bayesian
framework to obtain better estimates of model accuracy. We now
discuss how our scheduling algorithms can be further improved
using the results from our SneakPeek process.

5.3.1 Short-Circuit Inference. Since SneakPeek models estimate
class probabilities before the main scheduling process begins, they
can be used to provide an additional degree of freedom to schedulers.
If request deadlines are tight or the SneakPeek model has very
high accuracy, we can consider using the output of the SneakPeek
model directly to satisfy the inference request. To enable this option
within the scheduling framework, we treat the SneakPeek model
as a candidate for scheduling, assigning it an effective inference
latency of zero since its output has already been computed. This
allows the scheduler to consider the SneakPeek model alongside
other models and select it when doing so maximizes overall utility.

In figure 2, short-circuit inference places the SneakPeek model
alongside the other models in the model cache, with an expected
accuracy equal to the accuracy of the SneakPeek model and an
inference latency of zero (returning the 𝜃𝑖 values if selected). How-
ever, assigning a latency of zero to the SneakPeek model does not
guarantee it will be selected by the scheduler. Other models in the
model cache will have higher accuracy than SneakPeek, which is
designed to have low-latency. Therefore, defaulting to short-circuit
inference with the SneakPeek model is only beneficial when dead-
lines are tight and waiting for a more accurate model results in a
substantial loss in utility. Furthermore, we must rely on profiled ac-
curacy when making scheduling decisions with SneakPeek models.
We don’t want to risk compounding errors by letting a SneakPeek
model dynamically estimate its own accuracy based on the data.
Existing scheduling algorithms and our proposed approaches can
incorporate short-circuit inference directly, without requiring sub-
stantial changes to the system.

5.3.2 Enhancements for Grouped Scheduling. We can further im-
prove our grouped scheduling algorithm by leveraging the fact that
model accuracy varies, depending on the class label [54]. The group
scheduler puts all requests for a given application into a single
group, which then assigns a single model for all requests in the
group. We propose going a step further and using data-awareness
to split groups into subgroups based on the output from SneakPeek
models. This approach is consistent with our results from comput-
ing exact solutions in small dimensions. While 60-70% of optimal
solutions grouped requests based on target application (section 5.2),
almost all of the remaining cases grouped requests based on target
class label within each application. Using this insight and the infor-
mation provided by SneakPeek models, we modify our approach to
create a subgroup for each target label present in the data. We use
the output from SneakPeek models to estimate class membership
(indicated by 𝜃𝑖 > 0.5). If 𝜃𝑖 < 0.5 for all 𝑖 , we do not split that
request into a subgroup.

Figure 4 shows how the group splitting works for two binary
classification tasks. In the red group on the left, the SneakPeek
probabilities indicate the same class, so no splitting is performed.
For the white group on the right, the SneakPeek probabilities indi-
cate different classes are present, so the requests are split into two

SneakPeek: Data-Aware Model Selection and Scheduling for Inference Serving on the Edge SoCC ’25, November 19–21, 2025, Online, USA

Request 1
SneakPeek Probabilities: [0.6, 0.4]

Request 2
SneakPeek Probabilities: [0.8, 0.2]

Application
Groups

Data-Aware
Groups

Request 1
SneakPeek Probabilities: [0.6, 0.4]

Request 2
SneakPeek Probabilities: [0.8, 0.2]

Request 3
SneakPeek Probabilities: [0.9, 0.1]

Request 4
SneakPeek Probabilities: [0.25, 0.75]

Request 3
SneakPeek Probabilities: [0.9, 0.1]

Request 4
SneakPeek Probabilities: [0.25, 0.75]

Figure 4: An illustration of the group splitting process using SneakPeek. The SneakPeek probabilities indicate that the first two
requests have the same target class, and therefore require no splitting. We inferred that Requests 3 and 4 belong to different
classes, so we split that application group.

subgroups. In the case of multi-class classification, the probabilities
could also be inconclusive (i.e. 𝜃𝑖 < 0.5 for all 𝑖) which would not
result in any splitting.

6 EMPIRICAL EVALUATION
6.1 Methodology
Testbed. We conducted our experiments on a system with an Intel
i5 CPU, 32 GiB of main memory, and an NVIDIA RTX 3060 graphics
card, which has 12 GiB of memory.

Datasets and Models.We use systems and applications encoun-
tered in healthcare settings, including fall detection, speech com-
mands, and heart monitoring (table 1). For fall detection, we have
five model variants: 3 video models, one time series model (for
accelerometer data), and one fusion model which uses both data
modalities. Since falls are relatively rare events, we stream data
such that 95% of the requests contain true negatives and 5% of
the data contains true positives (a fall). For the voice command
application, we have two model variants and we generate data uni-
formly across the target classes. The heart monitoring application
also supports two models; we assume arrhythmias are somewhat
infrequent and generate true negatives 80% of the time, with the
other 20% distributed uniformly across the different arrhythmia
types. Profiled model accuracy is averaged over the data in the
test set. For generating a test set, we follow previously established
methodology when available. If no methodology is published, we
adopt the standard practice of randomly partitioning the available
data points into training and testing sets.

Baselines and Metrics. We compare our proposed approach with
several baselines. Each approach consists of an ordering policy–
earliest deadline first (EDF) or our Priority ordering (eq. 12)– and a
model selection strategy:
• Max Accuracy: Selects the highest accuracy model that can satisfy
the request
• Locally-Optimal: A generalization of several existingworkswhich
are deadline-aware [42, 47, 54] and select the highest accuracy
model that satisfies each deadline.

We consider the following combinations in our evaluation:

• MaxAcc-EDF : Max accuracy model selection + EDF ordering.
• LO-EDF : Locally-optimal model selection + EDF ordering.
• LO-Priority: Locally-optimal model selection + priority ordering.
• Grouped: Our group-level scheduling algorithm (Algorithm 1)
which groups requests based on target application.
• SneakPeek: Our group-level scheduling algorithmwith SneakPeek
data-awareness and short-circuit inference.

All of these approaches can be combined with SneakPeek and our
short-circuit (SC) inference optimization, which we evaluate in
the next section. When we evaluate SneakPeek with the grouped
approach, we also split groups based on target label (as discussed in
section 5.3). We evaluate these approaches in terms of scheduling
utility, accuracy, and deadline violations. For utility functions, we
use the following penalties:
• Step Function: Requests that complete after the deadline receive
a utility of zero, i.e. 𝛾𝑎𝑖 (𝑑𝑖 , 𝑒𝑖) = 1𝑑𝑖<𝑒𝑖
• Linear: Penalty that increases linearly, i.e. 𝛾𝑎𝑖 (𝑑𝑖 , 𝑒𝑖) =

1𝑑𝑖<𝑒𝑖 max(1, 𝑒𝑖−𝑑𝑖
𝑑𝑖
)

• Sigmoid: Penalty following a sigmoid curve: 𝛾𝑔𝑖 (𝑑𝑖 , 𝑒𝑖) =
1𝑑𝑖<𝑒𝑖max

(
1, 1

1+(𝑥
1−𝑥)−3

)
where 𝑥 = 1 − 2𝑑𝑖−𝑒𝑖

𝑑𝑖
.

By default, we use 12 requests (4 for each application) arriving
uniformly over a scheduling window of 100ms. For approximate
nearest neighbors, we use the Faiss library [14] and default to
𝑘 = 5. Unless otherwise stated, we use an uninformative prior for
SneakPeek estimation and default to the sigmoid penalty function.

6.2 Scheduling Performance
We first compare our proposed approaches in terms of the resulting
utility, accuracy, and deadline violations. If a deadline is exceeded,
the violation time for a given request is the completion time minus
the deadline. For these experiments, we fix the average deadline
per request at 150ms.

Figure 5 shows the resulting utility and model accuracy for this
experiment, while deadline violations can be found in figure 6. We
observe that SneakPeek achieves the highest utility compared to the
baselines: a 2x increase in utility compared to LO-EDF.MaxAcc-EDF
always selects the highest accuracy model, which results in high
average accuracy, but lower utility due to the associated deadline

SoCC ’25, November 19–21, 2025, Online, USA Joel Wolfrath, Daniel Frink, and Abhishek Chandra

Table 1: Applications and Datasets

Application Description Dataset Models

Fall
Detection

Determine if a subject has fallen (2
classes)

MMAct [33] X3D [17] for video data (small, medium, and large vari-
ants), MiniRocket [13] for time series, and a fusion model
which leverages both modalities [10]

Voice
Commands

Detect keywords spoken by staff
members (6 classes)

Speech Commands [53] Howl Framework [50] (with LSTM and MobileNet)

Heart
Monitoring

Monitor ECG data for abnormal pat-
terns (7 classes)

MIT-BIH Arrhythmia
Database [20]

EcgResNet34, CNN [30]

MaxAcc-EDF LO-EDF LO-Priority Grouped SneakPeek
0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
V

G
 U

ti
li
ty

/A
c
c
u
ra

c
y

Utility Accuracy

Figure 5: Comparison of average schedule utility and model
accuracy across approaches.

MaxAcc-EDF LO-EDF LO-Priority Grouped SneakPeek

1

2

3

V
io

la
io

n
s
 p

e
r

S
c
h
e
d
u
li
n
g
 W

in
d
o
w

 (
s
)

Figure 6: Deadlines violations across approaches.

violations. The other approaches have slightly lower accuracy but
also substantially lower deadline violations. The grouped scheduler
has the lowest accuracy, but relatively high utility, since it is able
to greedily incorporate inference batching to meet more deadlines.
SneakPeek has the fewest deadline violations (almost 0), since it
has all the benefits of the grouped scheduler and is able to leverage
short-circuit inference to meet deadlines when profiled models
cannot.

6.3 SneakPeek Performance
We now evaluate the ability of SneakPeek models to estimate model
accuracy and examine the effects of different prior distributions.

6.3.1 Dynamic Accuracy Estimation. We now evaluate the degree
to which our SneakPeek probabilities reduce error when estimating
model accuracy. We define the "true model accuracy" using the
expression in equation 9, with 𝜃𝑖 = 1 for the true class label and
𝜃𝑖 = 0 for all other labels. We use approximate nearest neighbors

Voice Command Fall Detection Heart Monitoring
0

1

2

3

4

5

6

7

8

P
e
rc

e
n
t

E
rr

o
r

Profiled Accuracy

SneakPeek KNN (k=1)

SneakPeek KNN (k=5)

Figure 7: Average error when estimating the accuracy of each
model.

MaxAcc-EDF LO-EDF LO-Priority Grouped
0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 U

ti
li
ty

SneakPeek
|
|

Data Oblivious

Accuracy Estimation

Accuracy Estimation + Short-Circuit Inference

Figure 8: Comparison of schedule utility across approaches,
including data-aware variants of each baseline approach.

as our SneakPeek model and evaluate the effect using 𝑘 = 1 and
𝑘 = 5. We measure the associated error using all three datasets
and restrict ourselves to uninformative priors when generating
SneakPeek probabilities.

Figure 7 shows the results for this experiment. We observe that
in all cases, the SneakPeek probabilities are able to improve the
estimates of model accuracy, with 𝑘 = 5 performing the best, fol-
lowed by 𝑘 = 1 for approximate nearest neighbors. Improvements
to these accuracy estimates is the main mechanism which allows
the data-aware schedulers to increase average schedule utility.

We also evaluate how the various data-awareness mechanisms
incrementally improve the existing approaches (figure 8). First,
we observe that the data-oblivious grouped scheduler attains a
higher utility than any of the data-aware baselines, showing the
benefits of grouping. In all cases, we observe that incorporating
data-awareness in the scheduling process improves schedule utility,
showing the benefit of using SneakPeek with any scheduling policy.

SneakPeek: Data-Aware Model Selection and Scheduling for Inference Serving on the Edge SoCC ’25, November 19–21, 2025, Online, USA

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SneakPeek Model Accuracy

0.0

0.2

0.4

0.6

0.8

1.0
A

v
e
ra

g
e
 U

ti
li
ty

Grouped SneakPeek

Figure 9: Schedule utility across different degrees of
SneakPeek model accuracy.

We also observe that in most cases, including SneakPeek models
as a scheduling option for short-circuit inference improves aver-
age schedule utility, although the degree varies across application.
Since most of our approaches involve locally-optimal decisions, the
SneakPeek models improve the utility of requests that have been
deemed low-priority. If we cannot satisfy the deadline for these
requests, SneakPeek models provide a mechanism for salvaging util-
ity. These improvements go beyond the benefits of data-awareness,
which are provided by using the SneakPeek probabilities to sharpen
model accuracy estimates. Note that MaxAcc-EDF does not benefit
from short-circuit inference, since it always selects the model that
maximizes accuracy, and SneakPeek is never the most accurate
model available.

6.3.2 SneakPeek Accuracy Requirements. Using SneakPeek mod-
els to estimate accuracy raises another question: how accurate do
SneakPeek models need to be? In order to answer this question,
we create a special SneakPeek model for each application, which
randomly returns class probabilities depending on a specified con-
fusion matrix. We simply generate a confusion matrix with the
specified accuracy (and uniformly distribute errors across the re-
maining classes). Then, given the data point, we randomly generate
probabilities using the specified frequencies in the true label row.

Figure 9 shows that accuracy values above 30% provide some util-
ity benefits. For lower accuracy values, we observe that the schedule
utility degrades slightly. These results suggest that SneakPeek mod-
els do not require extremely high accuracy, but can begin improving
scheduling decisions with moderate inference accuracy.

6.3.3 Choice of Prior. One of the SneakPeek hyperparameters is
the choice of prior distribution for 𝜽 . We now evaluate our differ-
ent priors and examine their effects on accuracy estimation. We
consider the following prior distributions for SneakPeek estimation:
• Uninformative: Does not provide any information regarding the
class frequencies.We use the Jeffreys prior, which assigns𝛼𝑖 = 0.5
for all 𝑖 .
• Weakly Informative: Incorporates expert knowledge, but does
not weight it heavily, e.g. by simply assigning 𝛼𝑖 the expected
frequency of each label.
• Strongly Informative: Incorporates expert knowledge and weights
it heavily, by assigning 𝛼𝑖 the expected number of requests with
label 𝑖 in a scheduling window.

Voice Command Fall Detection Heart Monitoring
0

2

4

6

8

P
e
rc

e
n
t

E
rr

o
r

Profiled Accuracy

Uninformative

Weakly Inform.

Strongly Inform.

(a) Prior distribution represents the true distribution
in the out-of-sample data.

Voice Command Fall Detection Heart Monitoring
0

2

4

6

8

P
e
rc

e
n
t

E
rr

o
r

Profiled Accuracy

Uninformative

Weakly Inform.

Strongly Inform.

(b) Prior distribution derived from test dataset, which
is not aligned with out-of-sample data.

Figure 10: Accuracy estimation error with different prior
distributions.

The "true distribution" is defined for each dataset as outlined in the
section 5.1. The distribution of labels in the test set (for profiling)
is formed by generating a uniform random sample from the entire
dataset for each application.

Figure 10a shows the resulting effects on accuracy estimation
when the prior captures the true distribution in the data. We ob-
serve that our accuracy estimation improves for both uninformative
priors and weakly informative priors. However, the strongly infor-
mative priors incur higher error rates, even if the prior matches the
true distribution. This occurs because a strong prior suppresses any
signal from the data itself. By averaging over the heterogeneity in
the data, strong priors give us essentially another profiled average.
This average may be slightly better than a profiled accuracy with
an arbitrary distribution, but it is still suboptimal.

Figure 10b shows the accuracy when the prior captures the distri-
bution in the test set, rather than the true distribution. In this case,
the uninformative prior provides the lowest error rates. The weakly
informative and strongly informative priors are increasingly worse,
since they incorporate information that does not represent the true
distribution of the data.

6.4 Sensitivity Analysis
For these experiments, we present results for LO-EDF (which is
representative of existing approaches) and our proposed algorithms,
omitting MaxAcc-EDF for clarity.

SoCC ’25, November 19–21, 2025, Online, USA Joel Wolfrath, Daniel Frink, and Abhishek Chandra

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Average Request Deadline (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 U

ti
li
ty

LO-EDF

LO-Priority

Grouped

SneakPeek

(a) Avg. utility w.r.t. deadlines

20 30 40 50 60 70

Deadline Std Dev (in ms)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 U

ti
li
ty

LO-EDF

LO-Priority

Grouped

SneakPeek

(b) Increasing variance

Figure 11: Resulting schedule utility with increasing dead-
lines and deadline variance.

2 4 6 8 10 12

Number of Applications

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 U

ti
li
ty

LO-EDF

LO-Priority

Grouped

SneakPeek

(a) Average Utility

2 4 6 8 10 12

Number of Applications

0

2

4

6

8

10

S
c
h
e
d
u
li
n
g
 o

v
e
rh

e
a
d
 (

m
s
)

LO-EDF

LO-Priority

Grouped

SneakPeek

(b) Scheduling Overhead

Figure 12: Scheduling utility and overhead as a function of
the number of applications.

6.4.1 Deadlines. We now evaluate how different deadline patterns
affect the proposed scheduling approaches.

Figure 11a examines how utility changes as request deadlines
get increasingly larger. We observe that the grouped scheduler
outperforms the proposed baselines for short-term deadlines and
the data-aware grouped scheduler consistently outperforms the
baselines. LO-EDF struggles with short deadlines, since EDF does
not incorporate information regarding which requests have high
accuracy variance. Furthermore, locally-optimal model selection
does not exploit inference batching. After 300 milliseconds, most
of the data-oblivious baselines converge to the same utility, since
the larger deadlines allow for more flexibility.

We consider another deadline experiment where we increase the
variance of the deadlines across requests. We generated deadlines
following a normal distribution with a mean of 150ms. We then
increase the variance of this distribution to observe the effect on
utility. Figure 11b shows the results for this experiment. We ob-
serve that all approaches slowly degrade as the variance increases.
When there are large differences between request deadlines, the
schedulers have fewer degrees of freedom to optimize and must
process more requests in the order specified by the deadlines, as
the tighter deadline requests become comparatively more urgent.

6.4.2 Number of Applications. Wenow examine how our approaches
behave as the number of applications increases. Note that increas-
ing the number of applications is not the same as increasing the
number of requests. We fix the number of requests at 24 for the
scheduling window and set the average deadline to 200ms (after
arrival). We selected a slightly longer deadline, since the number
of requests is higher than in previous experiments.

5 10 15 20 25 30

Arrivals per Window

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 U

ti
li
ty

LO-EDF

LO-Priority

Grouped

SneakPeek

(a) Utility w.r.t. arrival rate

5 10 15 20 25 30

Arrivals per Window

0

5

10

15

20

25

30

35

S
c
h
e
d
u
li
n
g
 o

v
e
rh

e
a
d
 (

m
s
)

LO-EDF

LO-Priority

Grouped

SneakPeek

(b) Scheduling Overhead

Figure 13: Scheduling utility and overhead as a function of
request arrival rate.

Figure 12a shows the results for this experiments. We observe
that the grouped approaches slowly degrade toward the baseline
approaches as the number of applications increases (for a fixed
number of requests). This is expected, since increasing the number
of applications increases the number of clusters. So our approach be-
haves more like LO-Priority as the number of applications increases.
LO-EDF and LO-Priority have consistent performance across an
increase in applications, since they make decisions at the request
level and the underlying models are the same.

Figure 12b examines the computational overhead for scheduling
as the number of applications increases. Each data point represents
the mean scheduling latency across 5 invocations of the sched-
uler. We first note that all of the approaches are able to produce
a schedule in under 10ms. We observe that for small number of
applications, the grouped approach requires additional time, since
it is able to solve the assignment problem via brute force. We also
observe an additional increase for the data-aware group-level sched-
uler, as it creates additional groups based on the target label. Since
the number of requests is fixed, the baseline approaches provide a
more consistent overhead. For larger numbers of applications, the
approaches roughly converge.

6.4.3 Request Arrival Rate. Our previous experiments assumed an
arrival rate of 12 requests, uniformly distributed across a 100ms
scheduling window. We now fix the deadline at 200ms and vary the
number of requests per window to observe the effects on schedule
utility. We can think of this as scaling the number of patients that
must be monitored by the existing applications.

Figure 13a shows that all approaches slowly experience degraded
utility as the number of arrivals increases. This is expected, since the
deadlines are fixed and the amount of inference compute required
is increasing. The schedulers are eventually forced to prioritize
requests as the deadlines become tighter. The grouped schedulers
perform the best in this scenario and maintain the highest average
utility. LO-Priority is the next best, since it also prioritizes requests
based on the variance in model performance and the anticipated
deadline. LO-EDF is deadline-aware, but does not prioritize requests
to account for the increased workload.

Figure 13b examines the computational overhead for scheduling
as the number of requests increases. For all approaches, we observe
an increase in scheduling overhead as the number of requests in-
creases. This is not surprising, since all of our proposed approaches
perform work that is linear in the number of requests. We also

SneakPeek: Data-Aware Model Selection and Scheduling for Inference Serving on the Edge SoCC ’25, November 19–21, 2025, Online, USA

0.2 0.3 0.4 0.5 0.6 0.7

Average Request Deadline (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 U

ti
li
ty

LO-EDF

LO-Priority

Grouped

SneakPeek

(a) Step Function Penalty

0.2 0.3 0.4 0.5 0.6 0.7

Average Request Deadline (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 U

ti
li
ty

LO-EDF

LO-Priority

Grouped

SneakPeek

(b) Linear Penalty

Figure 14: Schedule utility across penalty functions.

0 2 4 6 8 10

Percent increase in model accuracy/latency

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 U

ti
li
ty

LO-EDF

LO-Priority

Grouped

SneakPeek

Figure 15: Schedule utility with increasingly heterogeneous
model variants.

observe a slightly higher overhead for clustering (especially with
data-awareness) since the scheduler is able to brute force small
numbers of clusters.

6.4.4 Penalty Function. We now examine how various penalty
functions affect average scheduling utility.

Figure 14a shows the resulting utilities for a step function. We
observe that our data-aware group scheduler outperforms all the
other approaches. The data oblivious group scheduler also strongly
outperforms the baselines when deadlines are short, and is compa-
rable to the baselines when deadlines are longer. LO-Priority and
LO-EDF perform worse in this setting, since they fail to exploit
inference batching for early requests. Then the deadlines for later
requests are exceeded, which results in a utility of zero.

Figure 14b shares a similar pattern with the sigmoid penalty.
SneakPeek consistently outperforms the data-oblivious baselines.
Data-oblivious grouped scheduling also outperforms the baselines
when deadlines are short.

6.4.5 Model Variants. We now explore how different sets of model
variants affect schedule utility. The goal of this experiment is to
understand how model heterogeneity inM𝑎𝑖 (in terms of accuracy
and latency) influences system performance. We seek to derive prac-
tical insights that can guide practitioners in training and selecting
model variants for deployment in data-aware inference serving sys-
tems. We exclude the short-circuit approach from this evaluation, as
it obscures the direct effects of model heterogeneity when it defers
to the SneakPeek model. We first created test models that randomly
return the correct label following a pre-specified accuracy. Then,

we generate three models for each application: one which has the
mean accuracy and inference latency of all models inM𝑎 , and two
that we use to increase the variance in model performance for that
application. At each point, we alter the average accuracy (and la-
tency) by a specified percentage. For example, if the average model
inM𝑎 has 80% accuracy with an inference latency of 20ms, and
we want to increase the variance by 1%, we will create two models
with accuracies of 79.2% and 80.8%, and corresponding latencies of
19.8 ms and 20.2 ms.

Figure 15 shows the results for this experiment. We observe that
our proposed grouped approaches benefit substantially as the vari-
ance in model performance increases. The grouped approaches are
able to exploit inference batching, which allows for more time to
execute high utility models and meet more deadlines. This suggests
that including a diverse set of model variants gives systems the
most flexibility, which can help improve utility. The approaches
that do not incorporate grouping obtain lower utilities as the vari-
ance increases. As higher accuracy (and latency) models become
available, these locally-optimal approaches select them for the first
few requests, but then fail to meet the deadlines for the requests
that are later in the ordering.

6.5 Summary of Results
Our evaluation highlights the benefits of grouped scheduling, where
incorporating inference batching decisions in the scheduling pro-
cess has tangible benefits.We also showed that leveraging SneakPeek
models for data-awareness provides additional benefits, by selecting
more accurate models for each request.

7 MULTI-WORKER SETTING
7.1 Problem Definition
Our problem formulation currently focuses on a system with a
single GPU, but our proposed approaches can also be generalized
to settings with multiple, heterogeneous workers. The schedule can
be augmented to include a worker in the selection process (indexed
by 𝑘). For a set of workersW, the (global) optimization objective
becomes:

max
S

1
|R |

| R |∑︁
𝑖=1

|M𝑎𝑖
|∑︁

𝑗=1

|W|∑︁
𝑘=1

1𝑠𝑖 𝑗𝑘>0 𝑢𝑎𝑖 (𝑚 𝑗 , 𝑑𝑖 , 𝑡𝑖) (15)

In this setting, each model variant would be profiled on every
candidateworker, whichwould create latency functions that depend
on the model and worker.

7.2 Preliminary Results
We briefly examine how our approach performs in the multi-worker
environment by simulating multiple workers on the same hardware
used in the single-worker experiments. We ensure that each worker
operates independently to minimize resource contention. In our
first experiment (figure 16a), we compare schedule utilities with
two workers and vary the average deadline. Similar to the single
worker case, we observe strong benefits associated with grouped
scheduling, which is able to explicitly leverage inference batching.
Incorporating data-awareness (SneakPeek) also provides substantial
benefit, especially with higher request deadlines.

SoCC ’25, November 19–21, 2025, Online, USA Joel Wolfrath, Daniel Frink, and Abhishek Chandra

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Average Request Deadline (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 U

ti
li
ty

LO-EDF

LO-Priority

Grouped

SneakPeek

(a) Utility with two workers

1 2 3 4 5 6 7 8

Number of Workers

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 U

ti
li
ty

LO-EDF

LO-Priority

Grouped

SneakPeek

(b) Varying workers

Figure 16: Preliminary comparison of resulting schedule util-
ity in the multi-worker setting.

In figure 16b, we compare schedule utilities while varying the
number of workers. We use an average request deadline of 150 ms.
We observe that as the number of workers increases, the relative
benefit of our grouped scheduling decreases. This is expected, since
the benefit of inference batching decreases if there is less resource
contention and fewer requests are assigned to each worker. We
also note that the benefit of data-awareness increase slightly with
the number of workers. Since deadlines are tight, having more
executors allows us to avoid exclusively selecting the fastest model
to service the request.

8 DISCUSSION
Our evaluation highlights the benefits of data-awareness, which can
be incorporated seamlessly into existing schedulers and allows us to
select more accurate models for each request. We also observed that
grouped scheduling provides additional benefits by incorporating
inference batching decisions into the scheduling process.

Our system performs SneakPeek modeling on an edge system,
but a future work could push these operations closer to the data-
generating devices. For example, if this computation can be per-
formed on local IoT devices, data transfers could be avoided, and
short-circuit inference could be leveraged when appropriate. Cloud
offloading was excluded from this analysis, since WAN transfers
can be costly and applications in healthcare and other domains may
be restricted in their ability to offload data. However, offloading in-
ference to the cloud can also be incorporated into our framework by
modifying the latency function ℓ (𝑚 𝑗) to include any data transfer
time required to run a model in a different location.

Additional modifications may be required to further improve
efficiency in the multi-worker setting. For grouped scheduling, we
need to enforce a maximum group size and split groups. Having one
very large group could lead to load imbalance, so we may require
periodic load balancing. Furthermore, data plane optimizations
could also be explored to ensure video frames are always available
for inference by the time requests are dispatched to workers.

9 RELATEDWORK
Inference serving (or model serving) has received substantial re-
search attention, with a special focus on cloud deployments [4, 16,
23, 36, 40, 45, 46, 55]. The InFaaS system introduced the concept
of model-less inference serving, where model variants are dynami-
cally selected by the system in addition to serving the request [46].
Other systems such as MArk attempt to forecast demand and use

autoscaling to ensure that performance is consistent across fluctu-
ating workloads [55]. Resource elasticity is a common component
in these designs, which is not available in all application settings.
In addition, offloading data to the cloud may be infeasible due to
network constraints or privacy requirements.

Several optimizations have been proposed to improve various
aspects of the inference serving model (for both edge and cloud
deployments). Several techniques employ dynamic batching to re-
duce inference latency when the scheduler assigns the same model
to adjacent requests [1, 11, 45]. However, inference batching can
be exploited further when it is incorporated directly in schedul-
ing decisions (e.g. with a grouped scheduler). A complimentary
research direction attempts to improve efficiency by having multi-
ple requests share hardware resources [24, 37, 39, 42]. Additional
works have considered mechanisms for exploiting multi-modal
data sources to improve system efficiency [28, 54]. Systems that
process multi-modal data often have models with extremely diverse
characteristics (accuracy and latency) which can offer additional
flexibility to the system [54]. Efficient interaction with inference
serving systems is another important research area, given the over-
head of transmitting data and models [34]. These optimizations are
largely complimentary and can be incorporated directly into our
system.

Additional works directly address machine learning inference
in hardware-constrained settings, such as the edge [1, 2, 22, 35, 42,
47, 48, 51, 54, 56, 57]. A common strategy is to consider accuracy
scaling when hardware-scaling is unavailable [1, 2, 18, 38, 42, 54].
The Proteus system maximizing model accuracy, subject to a con-
straint on the minimum system throughput [1]. Other edge systems
attempt to offload requests when insufficient resources are available
locally [42, 52]. The Neurosurgeon system dynamically partitions
DNN models to allow parts of the model to execute locally at the
edge while the remaining computation is offloaded to the cloud [31].
The LayerCake system performs locally-optimal model selection at
the edge, while also enumerating candidate models that can be run
in the cloud [42]. Inference pipelines are also commonly deployed
at the edge. Video analytics pipelines such as Chameleon and Ekya
leverage spatial-awareness and continuous learning to improve
efficiency and accuracy at the edge [5, 29].

10 CONCLUSION
We proposed a scheduling algorithm for hardware-constrained in-
ference serving which implements accuracy scaling and greedily
incorporates inference batching into the scheduling process. We
also showed that making decisions based on profiled model accu-
racy is suboptimal, since it is a static quantity computed over a test
dataset and may not reflect the characteristics of out-of-sample data.
To address this, we proposed SneakPeek: a data-aware approach
which attempts to dynamically improve the estimates of model
accuracy in real-time. Our evaluation shows that these techniques
obtain higher utility schedules and higher SLO attainment.

ACKNOWLEDGEMENTS
We thank our shepherd Francisco Romero and the anonymous
reviewers for their valuable feedback on this work.

SneakPeek: Data-Aware Model Selection and Scheduling for Inference Serving on the Edge SoCC ’25, November 19–21, 2025, Online, USA

REFERENCES
[1] Sohaib Ahmad, Hui Guan, Brian D. Friedman, ThomasWilliams, Ramesh K. Sitara-

man, and Thomas Woo. 2024. Proteus: A High-Throughput Inference-Serving
System with Accuracy Scaling. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 1 (ASPLOS ’24). Association for Computing Machinery, New
York, NY, USA, 318–334.

[2] Sohaib Ahmad, Hui Guan, and Ramesh K. Sitaraman. 2024. Loki: A System
for Serving ML Inference Pipelines with Hardware and Accuracy Scaling. In
Proceedings of the 33rd International Symposium on High-Performance Parallel and
Distributed Computing (Pisa, Italy) (HPDC ’24). Association for Computing Ma-
chinery, New York, NY, USA, 267–280. https://doi.org/10.1145/3625549.3658688

[3] Ganesh Ananthanarayanan et al. 2017. Real-Time Video Analytics: The Killer
App for Edge Computing. Computer (2017).

[4] Tiago Da Silva Barros et al. 2024. Scheduling with Fully Compressible Tasks:
Application to Deep Learning Inference with Neural Network Compression.
In 2024 IEEE/ACM 24th International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). 327–336.

[5] Romil Bhardwaj et al. 2022. Ekya: Continuous Learning of Video Analytics
Models on Edge Compute Servers. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). USENIX Association, Renton, WA,
119–135.

[6] S. C. Bollepalli, R. K. Sevakula, W. M. Au-Yeung, M. B. Kassab, F. M. Merchant,
G. Bazoukis, R. Boyer, E. M. Isselbacher, and A. A. Armoundas. 2021. Real-Time
Arrhythmia Detection Using Hybrid Convolutional Neural Networks. J Am Heart
Assoc 10, 23 (Dec 2021), e023222.

[7] John Bruno and Peter Downey. 1978. Complexity of Task Sequencing with
Deadlines, Set-Up Times and Changeover Costs. SIAM J. Comput. 7, 4 (1978),
393–404. https://doi.org/10.1137/0207031

[8] Hoyt Burdick, Carson Lam, Samson Mataraso, Anna Siefkas, Gregory Braden,
R. Phillip Dellinger, Andrea McCoy, Jean-Louis Vincent, Abigail Green-Saxena,
Gina Barnes, Jana Hoffman, Jacob Calvert, Emily Pellegrini, and Ritankar Das.
2020. Prediction of respiratory decompensation in Covid-19 patients using
machine learning: The READY trial. Computers in Biology and Medicine 124
(2020), 103949.

[9] Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. 1998. A Review of Machine
Scheduling: Complexity, Algorithms and Approximability. Springer US, Boston,
MA, 1493–1641. https://doi.org/10.1007/978-1-4613-0303-9_25

[10] Hyeongju Choi, Apoorva Beedu, Harish Haresamudram, and Irfan Essa. 2022.
Multi-Stage Based Feature Fusion of Multi-Modal Data for Human Activity
Recognition. arXiv:2211.04331 [cs.CV]

[11] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. In 14th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17). USENIX Association, Boston, MA, 613–627.

[12] Stefania Cristina, Vladimir Despotovic, Rodrigo Pérez-Rodríguez, and Slavisa
Aleksic. 2024. Audio- and Video-Based Human Activity Recognition Systems in
Healthcare. IEEE Access 12 (2024), 8230–8245.

[13] Angus Dempster, Daniel F. Schmidt, and Geoffrey I. Webb. 2021. MiniRocket: A
Very Fast (Almost) Deterministic Transform for Time Series Classification (KDD
’21). Association for Computing Machinery, New York, NY, USA, 248–257.

[14] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The Faiss library. (2024). arXiv:2401.08281 [cs.LG]

[15] Zhou Fang, Dezhi Hong, and Rajesh K. Gupta. 2019. Serving deep neural networks
at the cloud edge for vision applications on mobile platforms. In Proceedings of
the 10th ACM Multimedia Systems Conference (Amherst, Massachusetts) (MMSys
’19). Association for Computing Machinery, New York, NY, USA, 36–47. https:
//doi.org/10.1145/3304109.3306221

[16] Zhou Fang, Tong Yu, Ole J. Mengshoel, and Rajesh K. Gupta. 2017. QoS-Aware
Scheduling of Heterogeneous Servers for Inference in Deep Neural Networks.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management (Singapore, Singapore) (CIKM ’17). Association for Computing
Machinery, New York, NY, USA, 2067–2070.

[17] C. Feichtenhofer. 2020. X3D: Expanding Architectures for Efficient Video Recog-
nition. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 200–210.

[18] Andrea Fresa and Jaya Prakash Champati. 2021. Offloading Algorithms for
Maximizing Inference Accuracy on Edge Device Under a Time Constraint. CoRR
abs/2112.11413 (2021). arXiv:2112.11413 https://arxiv.org/abs/2112.11413

[19] Bruce Friedman, Daniel Fuckert, Mary Jahrsdoerfer, Rochelle Magness, Emily S.
Patterson, Rehman Syed, and John R. Zaleski. 2019. Identifying and Monitoring
Respiratory Compromise: Report from the Rules and Algorithms Working Group.
Biomedical Instrumentation & Technology 53, 2 (2019), 110–123.

[20] A L Goldberger, L A Amaral, L Glass, J M Hausdorff, P C Ivanov, R G Mark, J E
Mietus, G B Moody, C K Peng, and H E Stanley. 2000. PhysioBank, PhysioToolkit,
and PhysioNet: components of a new research resource for complex physiologic
signals. Circulation 101, 23 (June 2000), E215–20.

[21] Margherita Grandini, Enrico Bagli, and Giorgio Visani. 2020. Metrics for Multi-
Class Classification: an Overview. arXiv:2008.05756 [stat.ML] https://arxiv.org/
abs/2008.05756

[22] Peizhen Guo, Bo Hu, andWenjun Hu. 2022. Sommelier: Curating DNNModels for
the Masses. In Proceedings of the 2022 International Conference on Management of
Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Machin-
ery, New York, NY, USA, 1876–1890. https://doi.org/10.1145/3514221.3526173

[23] M. Halpern, B. Boroujerdian, T. Mummert, E. Duesterwald, and V. Janapa Reddi.
2019. One Size Does Not Fit All: Quantifying and Exposing the Accuracy-Latency
Trade-Off in Machine Learning Cloud Service APIs via Tolerance Tiers. In 2019
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). Los Alamitos, CA, USA.

[24] Ziyi Han, Ruiting Zhou, Chengzhong Xu, Yifan Zeng, and Renli Zhang. 2024. InSS:
An Intelligent Scheduling Orchestrator for Multi-GPU Inference With Spatio-
Temporal Sharing. IEEE Transactions on Parallel and Distributed Systems 35, 10
(2024), 1735–1748. https://doi.org/10.1109/TPDS.2024.3430063

[25] Mohammed K. Hassan, Ali I. El Desouky, Sally M. Elghamrawy, and Amany M.
Sarhan. 2019. Big Data Challenges and Opportunities in Healthcare Informatics
and Smart Hospitals. Springer International Publishing, Cham.

[26] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and
Xiaodong Wang. 2018. Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). 620–629. https://doi.org/10.1109/HPCA.
2018.00059

[27] Shenda Hong, Yanbo Xu, Alind Khare, Satria Priambada, Kevin Maher, Alaa
Aljiffry, Jimeng Sun, and Alexey Tumanov. 2020. HOLMES: Health OnLine
Model Ensemble Serving for Deep Learning Models in Intensive Care Units.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (Virtual Event, CA, USA) (KDD ’20). Association for
Computing Machinery, New York, NY, USA, 1614–1624.

[28] Bodun Hu, Le Xu, Jeongyoon Moon, Neeraja J. Yadwadkar, and Aditya
Akella. 2023. MOSEL: Inference Serving Using Dynamic Modality Selection.
arXiv:2310.18481 [cs.LG]

[29] Junchen Jiang et al. 2018. Chameleon: Scalable Adaptation of Video Analytics.
In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication (Budapest, Hungary) (SIGCOMM ’18). Association for Computing
Machinery, New York, NY, USA, 253–266.

[30] Tae Joon Jun, Hoang Minh Nguyen, Daeyoun Kang, Dohyeun Kim, Daeyoung
Kim, and Young-Hak Kim. 2018. ECG arrhythmia classification using a 2-D
convolutional neural network. CoRR abs/1804.06812 (2018). http://arxiv.org/abs/
1804.06812

[31] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative Intelligence Between
the Cloud and Mobile Edge. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems (Xi’an, China) (ASPLOS ’17). Association for Computing Machinery, New
York, NY, USA, 615–629.

[32] Liu Ke, Udit Gupta, Mark Hempstead, Carole-Jean Wu, Hsien-Hsin S. Lee, and
Xuan Zhang. 2022. Hercules: Heterogeneity-Aware Inference Serving for At-
Scale Personalized Recommendation. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 141–154. https://doi.org/10.
1109/HPCA53966.2022.00019

[33] Quan Kong, Ziming Wu, Ziwei Deng, Martin Klinkigt, Bin Tong, and Tomokazu
Murakami. 2019. MMAct: A Large-Scale Dataset for Cross Modal Human Ac-
tion Understanding. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV).

[34] Adithya Kumar, Anand Sivasubramaniam, and Timothy Zhu. 2023. SplitRPC:
A Control + Data Path Splitting RPC Stack for ML Inference Serving. Proc.
ACM Meas. Anal. Comput. Syst. 7, 2, Article 30 (May 2023), 26 pages. https:
//doi.org/10.1145/3589974

[35] ChonLam Lao, Jiaqi Gao, Ganesh Ananthanarayanan, Aditya Akella, and
Minlan Yu. 2024. HawkVision: Low-Latency Modeless Edge AI Serving.
arXiv:2405.19213 [eess.SY] https://arxiv.org/abs/2405.19213

[36] Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. 2023. Kairos:
Building Cost-Efficient Machine Learning Inference Systems with Heterogeneous
Cloud Resources. In Proceedings of the 32nd International Symposium on High-
Performance Parallel and Distributed Computing (Orlando, FL, USA) (HPDC ’23).
Association for Computing Machinery, 3–16.

[37] Lixian Ma, Haoruo Chen, En Shao, Leping Wang, Quan Chen, and Guangming
Tan. 2024. ElasticRoom: Multi-Tenant DNN Inference Engine via Co-design with
Resource-constrained Compilation and Strong Priority Scheduling. In Proceedings
of the 33rd International Symposium on High-Performance Parallel and Distributed
Computing (Pisa, Italy) (HPDC ’24). Association for Computing Machinery, 1–14.

[38] Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib. 2020. Optimiz-
ing Deep Learning Inference on Embedded Systems Through Adaptive Model
Selection. ACM Trans. Embed. Comput. Syst. 19, 1, Article 2 (feb 2020), 28 pages.

https://doi.org/10.1145/3625549.3658688
https://doi.org/10.1137/0207031
https://doi.org/10.1007/978-1-4613-0303-9_25
https://arxiv.org/abs/2211.04331
https://arxiv.org/abs/2401.08281
https://doi.org/10.1145/3304109.3306221
https://doi.org/10.1145/3304109.3306221
https://arxiv.org/abs/2112.11413
https://arxiv.org/abs/2112.11413
https://arxiv.org/abs/2008.05756
https://arxiv.org/abs/2008.05756
https://arxiv.org/abs/2008.05756
https://doi.org/10.1145/3514221.3526173
https://doi.org/10.1109/TPDS.2024.3430063
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/HPCA.2018.00059
https://arxiv.org/abs/2310.18481
http://arxiv.org/abs/1804.06812
http://arxiv.org/abs/1804.06812
https://doi.org/10.1109/HPCA53966.2022.00019
https://doi.org/10.1109/HPCA53966.2022.00019
https://doi.org/10.1145/3589974
https://doi.org/10.1145/3589974
https://arxiv.org/abs/2405.19213
https://arxiv.org/abs/2405.19213

SoCC ’25, November 19–21, 2025, Online, USA Joel Wolfrath, Daniel Frink, and Abhishek Chandra

[39] Daniel Mendoza, Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos
Kozyrakis. 2021. Interference-Aware Scheduling for Inference Serving. In Pro-
ceedings of the 1st Workshop on Machine Learning and Systems (Online, United
Kingdom) (EuroMLSys ’21). Association for Computing Machinery, New York,
NY, USA, 80–88. https://doi.org/10.1145/3437984.3458837

[40] Daniel Mendoza, Francisco Romero, and Caroline Trippel. 2024. Model Selection
for Latency-Critical Inference Serving. In Proceedings of the Nineteenth Euro-
pean Conference on Computer Systems (EuroSys ’24). Association for Computing
Machinery, New York, NY, USA, 1016–1038.

[41] Vinod Nigade, Pablo Bauszat, Henri Bal, and Lin Wang. 2022. Jellyfish: Timely
Inference Serving for Dynamic Edge Networks. In 2022 IEEE Real-Time Systems
Symposium (RTSS). 277–290. https://doi.org/10.1109/RTSS55097.2022.00032

[42] Samuel Ogden and Tian Guo. 2023. LayerCake: Efficient Inference Serving with
Cloud and Mobile Resources. In 2023 23nd IEEE International Symposium on
Cluster, Cloud and Internet Computing (CCGrid).

[43] Iyiola E. Olatunji and Chun-Hung Cheng. 2019. Video Analytics for Visual Surveil-
lance and Applications: An Overview and Survey. Springer.

[44] Khansa Rasheed et al. 2021. Machine Learning for Predicting Epileptic Seizures
Using EEG Signals: A Review. IEEE Reviews in Biomedical Engineering 14 (2021),
139–155.

[45] Kamran Razavi, Saeid Ghafouri, Max Mühlhäuser, Pooyan Jamshidi, and Lin
Wang. 2024. Sponge: Inference Serving with Dynamic SLOs Using In-Place
Vertical Scaling. In Proceedings of the 4th Workshop on Machine Learning and
Systems (EuroSys ’24). ACM, 184–191. https://doi.org/10.1145/3642970.3655833

[46] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2021.
INFaaS: Automated Model-less Inference Serving. In 2021 USENIX Annual Tech-
nical Conference (USENIX ATC 21). USENIX Association, 397–411.

[47] Wonik Seo, Sanghoon Cha, Yeonjae Kim, Jaehyuk Huh, and Jongse Park. 2021.
SLO-Aware Inference Scheduler for Heterogeneous Processors in Edge Platforms.
ACM Trans. Archit. Code Optim. 18, 4, Article 43 (jul 2021), 26 pages. https:
//doi.org/10.1145/3460352

[48] Yechao She et al. 2023. On-demand Edge Inference Scheduling with Accuracy and
Deadline Guarantee. In 2023 IEEE/ACM 31st International Symposium on Quality
of Service (IWQoS). 1–10.

[49] Mohammad Khubeb Siddiqui et al. 2020. A review of epileptic seizure detection
using machine learning classifiers. Brain Informatics 7, 1 (25 May 2020), 5. https:
//doi.org/10.1186/s40708-020-00105-1

[50] Raphael Tang, Jaejun Lee, Afsaneh Razi, Julia Cambre, Ian Bicking, Jofish Kaye,
and Jimmy Lin. 2020. Howl: A Deployed, Open-Source Wake Word Detection
System. In Proceedings of Second Workshop for NLP Open Source Software (NLP-
OSS). Association for Computational Linguistics, 61–65. https://doi.org/10.18653/
v1/2020.nlposs-1.9

[51] Achilleas Tzenetopoulos et al. 2024. Seamless HW-accelerated AI serving in
heterogeneous MEC Systems with AI@EDGE. In Proceedings of the 33rd Interna-
tional Symposium on High-Performance Parallel and Distributed Computing (Pisa,
Italy) (HPDC ’24). Association for Computing Machinery, New York, NY, USA,
377–380.

[52] Xuezhi Wang et al. 2022. Dynamic DNN Model Selection and Inference off
Loading for Video Analytics with Edge-Cloud Collaboration. In Proceedings of
the 32nd Workshop on Network and Operating Systems Support for Digital Audio
and Video. Association for Computing Machinery, New York, NY, USA, 64–70.

[53] Pete Warden. 2017. Speech Commands: A public dataset for single-word speech
recognition. (2017).

[54] Joel Wolfrath, Anirudh Achanta, and Abhishek Chandra. 2024. Leveraging
Multi-Modal Data for Efficient Edge Inference Serving. In 2024 IEEE/ACM 24th
International Symposium on Cluster, Cloud and Internet Computing (CCGrid).
408–417.

[55] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019. MArk: Exploit-
ing Cloud Services for Cost-Effective, SLO-Aware Machine Learning Inference
Serving. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX
Association, Renton, WA, 1049–1062.

[56] Ziyang Zhang, Yang Zhao, and Jie Liu. 2023. Octopus: SLO-Aware Progres-
sive Inference Serving via Deep Reinforcement Learning in Multi-tenant Edge
Cluster. In Service-Oriented Computing, Flavia Monti, Stefanie Rinderle-Ma, An-
tonio Ruiz Cortés, Zibin Zheng, and Massimo Mecella (Eds.). Springer Nature
Switzerland, Cham, 242–258.

[57] Kongyange Zhao et al. 2023. EdgeAdaptor: Online Configuration Adaption,
Model Selection and Resource Provisioning for Edge DNN Inference Serving at
Scale. IEEE Transactions on Mobile Computing 22, 10 (2023), 5870–5886.

https://doi.org/10.1145/3437984.3458837
https://doi.org/10.1109/RTSS55097.2022.00032
https://doi.org/10.1145/3642970.3655833
https://doi.org/10.1145/3460352
https://doi.org/10.1145/3460352
https://doi.org/10.1186/s40708-020-00105-1
https://doi.org/10.1186/s40708-020-00105-1
https://doi.org/10.18653/v1/2020.nlposs-1.9
https://doi.org/10.18653/v1/2020.nlposs-1.9

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Motivating Applications
	2.2 System Model

	3 Problem Statement and System Architecture
	3.1 Problem Statement
	3.2 System Architecture

	4 SneakPeek: Incorporating Data-Awareness
	4.1 Dependence on Model Accuracy
	4.2 SneakPeek Estimation Scheme

	5 Model Selection and Scheduling
	5.1 Proposed Approach
	5.2 Grouped Scheduling
	5.3 Data-Aware Enhancements

	6 Empirical Evaluation
	6.1 Methodology
	6.2 Scheduling Performance
	6.3 SneakPeek Performance
	6.4 Sensitivity Analysis
	6.5 Summary of Results

	7 Multi-Worker Setting
	7.1 Problem Definition
	7.2 Preliminary Results

	8 Discussion
	9 Related Work
	10 Conclusion
	References

